PPt4Web Хостинг презентаций

Главная / Математика / Методы оптимизации
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Методы оптимизации


Скачать эту презентацию

Презентация на тему: Методы оптимизации


Скачать эту презентацию

№ слайда 1 МЕТОДЫ ОПТИМИЗАЦИИ § 1. Основные понятия
Описание слайда:

МЕТОДЫ ОПТИМИЗАЦИИ § 1. Основные понятия

№ слайда 2 Под оптимизацией понимают процесс выбора наилучшего варианта из всех возможных В
Описание слайда:

Под оптимизацией понимают процесс выбора наилучшего варианта из всех возможных В процессе решения задачи оптимизации обычно необходимо найти оптимальные значения некоторых параметров, определяющих данную задачу. При решении инженерных задач их принято называть проектными параметрами, а в экономических задачах их обычно называют параметрами плана.

№ слайда 3 Выбор оптимального решения или сравнение двух альтернативных решений проводится
Описание слайда:

Выбор оптимального решения или сравнение двух альтернативных решений проводится с помощью некоторой зависимой величины (функции), определяемой проектными параметрами. Эта величина называется целевой функцией (или критерием качества). В процессе решения задачи оптимизации должны быть найдены такие значения проектных параметров, при которых целевая функция имеет минимум (или максимум).

№ слайда 4 Задачи оптимизации. Безусловная задача оптимизации состоит в отыскании максимума
Описание слайда:

Задачи оптимизации. Безусловная задача оптимизации состоит в отыскании максимума или минимума действительной функции от n действительных переменных и определении соответствующих значений аргументовУсловные задачи оптимизации, или задачи с ограничениями, — это такие, при формулировке которых задаются некоторые условия (ограничения) на множестве.

№ слайда 5 Теория и методы решения задач оптимизации при наличии ограничений составляют пре
Описание слайда:

Теория и методы решения задач оптимизации при наличии ограничений составляют предмет исследования одного из важных разделов прикладной математики — математического программирования.

№ слайда 6 § 2. Одномерная оптимизация Одномерная задача оптимизации в общем случае формули
Описание слайда:

§ 2. Одномерная оптимизация Одномерная задача оптимизации в общем случае формулируется следующим образом: Найти наименьшее (или наибольшее) значение целевой функции у = f(x), заданной на множестве и определить значение проектного параметра при котором целевая функция принимает экстремальное значение.Существование решения поставленной задачи вытекает из следующей теоремы:

№ слайда 7 Теорема Вейерштрасса. Всякая функция f(x), непрерывная на отрезке принимает на э
Описание слайда:

Теорема Вейерштрасса. Всякая функция f(x), непрерывная на отрезке принимает на этом отрезке наименьшее и наибольшеезначения, т. е. на отрезке существуют такие точки

№ слайда 8 Методы поиска. Численные методы поиска экстремальных значений функции рассмотрим
Описание слайда:

Методы поиска. Численные методы поиска экстремальных значений функции рассмотрим на примере нахождения минимума функции f(x) на отрезке Будем предполагать, что целевая функция унимодальна, т. е. на данном отрезке она имеет только один минимум.

№ слайда 9 Погрешность приближенного решения задачи определяется разностью между оптимальны
Описание слайда:

Погрешность приближенного решения задачи определяется разностью между оптимальным значением х проектного параметра и приближением к нему Потребуем, чтобы эта погрешность была по модулю меньше заданного допустимого значения

№ слайда 10 Процесс решения задачи методом поиска состоит в последовательном сужении интерва
Описание слайда:

Процесс решения задачи методом поиска состоит в последовательном сужении интервала изменения проектного параметра, называемого интервалом неопределенности В начале процесса оптимизации его длина равна b – a, а к концу она должна стать меньше т. е. оптимальное значение проектного параметра должно находиться в интервале неопределенности — отрезке

№ слайда 11 Тогда для выполнения условия в качестве приближения к оптимальному значению можн
Описание слайда:

Тогда для выполнения условия в качестве приближения к оптимальному значению можно принять любое В последнем случае достаточно выполнения неравенства

№ слайда 12 Метод золотого сечения. Метод состоит в построении последовательности отрезков ,
Описание слайда:

Метод золотого сечения. Метод состоит в построении последовательности отрезков ,…, стягивающихся к точке минимума функции f(x). На каждом шаге, за исключением первого, вычисление значения функции f(x) проводится лишь в одной точке. Эта точка, называемая золотым сечением, выбирается специальным образом.

№ слайда 13 1 шагвнутри отрезка выбираем некоторые внутренние точки и вычисляем значения цел
Описание слайда:

1 шагвнутри отрезка выбираем некоторые внутренние точки и вычисляем значения целевой функции

№ слайда 14
Описание слайда:

№ слайда 15 Поскольку в данном случае очевидно, что минимум расположен на одном из прилегающ
Описание слайда:

Поскольку в данном случае очевидно, что минимум расположен на одном из прилегающих к можно отбросить, сузив тем самым первоначальный интервал неопределенности.

№ слайда 16 Второй шаг проводим на отрезке Нужно снова выбрать две внутренние точки, но одна
Описание слайда:

Второй шаг проводим на отрезке Нужно снова выбрать две внутренние точки, но одна из них осталась из предыдущего шага, поэтому достаточно выбрать лишь одну точку вычислить значение и провести сравнение.

№ слайда 17 Поскольку здесь ясно, что минимум находится на отрезке Обозначим этот отрезок сн
Описание слайда:

Поскольку здесь ясно, что минимум находится на отрезке Обозначим этот отрезок снова выберем одну внутреннюю точку и повторим процедуру сужения интервала неопределенности. Процесс оптимизации повторяется до тех пор, пока длина очередного отрезка не станет меньше заданной величины

№ слайда 18 Теперь рассмотрим способ размещения внутренних точек на каждом отрезке Пусть дли
Описание слайда:

Теперь рассмотрим способ размещения внутренних точек на каждом отрезке Пусть длина интервала неопределенности равна l, а точка деления разбивает его на части Золотое сечение интервала неопределенности выбирается так, чтобы отношение длины большего отрезка к длине всего интервала равнялось отношению длины меньшего отрезка к длине большего отрезка:

№ слайда 19 Из этого соотношения можно найти точку деления, вычислив отношенияПреобразуем вы
Описание слайда:

Из этого соотношения можно найти точку деления, вычислив отношенияПреобразуем выражение и найдем значения

№ слайда 20 Поскольку нас интересует только положительное решение, то Очевидно, что интервал
Описание слайда:

Поскольку нас интересует только положительное решение, то Очевидно, что интервал неопределенности можноразделить в соотношении золотого сечения двояко: в пропорциях

№ слайда 21 Начальная длина интервала неопределенности составляет После первого шага оптимиз
Описание слайда:

Начальная длина интервала неопределенности составляет После первого шага оптимизации получается новый интервал неопределенности — отрезок Его длина равна

№ слайда 22 На втором шаге отрезок также делится в соотношении золотого сечения. При этом од
Описание слайда:

На втором шаге отрезок также делится в соотношении золотого сечения. При этом одной из точек деления будет точка Последнее равенство следует из соотношения

№ слайда 23 Вторая точка деления выбирается так же, как выбирается точка при делении отрезка
Описание слайда:

Вторая точка деления выбирается так же, как выбирается точка при делении отрезка И снова интервал неопределенности уменьшается до размера

№ слайда 24 По аналогии можно записать координаты точек деления у и z отрезка на к-м шаге оп
Описание слайда:

По аналогии можно записать координаты точек деления у и z отрезка на к-м шаге оптимизации (у < z):

№ слайда 25 Вычислению, естественно, подлежит только одна из координат у, z другая координат
Описание слайда:

Вычислению, естественно, подлежит только одна из координат у, z другая координата берется с предыдущего шага. При этом длина интервала неопределенности равна

№ слайда 26 Как и в общем случае метода поиска, процесс оптимизации заканчивается при выполн
Описание слайда:

Как и в общем случае метода поиска, процесс оптимизации заканчивается при выполнении условия Тогда проектный параметр оптимизации В качестве приближения к оптимальному значению можно принять В последнем случае для достижения требуемой точности достаточно, чтобы

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru