PPt4Web Хостинг презентаций

Главная / Геометрия / «Правильные многогранники» 10 класс
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: «Правильные многогранники» 10 класс


Скачать эту презентацию

Презентация на тему: «Правильные многогранники» 10 класс


Скачать эту презентацию

№ слайда 1 Тема урока: «Правильные многогранники.» ( 2 часа ), 10 класс Трофимова Нина Васи
Описание слайда:

Тема урока: «Правильные многогранники.» ( 2 часа ), 10 класс Трофимова Нина Васильевна учитель математики МОУ средней общеобразовательной школы посёлка Кневицы 5klass.net

№ слайда 2 Содержание Симметрия в пространстве. Правильные многогранники. Элементы симметри
Описание слайда:

Содержание Симметрия в пространстве. Правильные многогранники. Элементы симметрии правильных многогранников.

№ слайда 3 Цель изучения 1.Познакомить учащихся с симметрией в пространстве. 2.Познакомить
Описание слайда:

Цель изучения 1.Познакомить учащихся с симметрией в пространстве. 2.Познакомить учащихся с новым типом выпуклых многогранников – правильными многогранниками. 3.Показать влияние правильных многогранников на возникновение философских теорий и фантастических гипотез. 4.Показать связь геометрии и природы. 5.Познакомить учащихся с симметрией правильных многогранников.

№ слайда 4 Прогнозируемый результат 1.Знать понятия симметричных точек относительно точки,
Описание слайда:

Прогнозируемый результат 1.Знать понятия симметричных точек относительно точки, прямой, плоскости; понятия центра, оси и плоскости симметрии фигуры. 2.Знать определение правильных выпуклых многогранников. 3.Уметь доказать, что существует всего пять видов таких тел. 4.Уметь охарактеризовать каждый вид правильных многогранников. 5.Уметь охарактеризовать элементы симметрии правильных многогранников. 6.Уметь решать задачи на нахождение элементов правильных многогранников.

№ слайда 5 «Правильных многогранников вызывающе мало, но этот весьма скромный по численност
Описание слайда:

«Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук» Льюис Кэрролл

№ слайда 6 Ход урока … В планиметрии мы рассматривали фигуры, симметричные относительно точ
Описание слайда:

Ход урока … В планиметрии мы рассматривали фигуры, симметричные относительно точки и относительно прямой. В стереометрии рассматривают симметрию относительно точки, прямой и плоскости. О a α

№ слайда 7 А1 О А Рис.1 Точки А и А1 называются симметричными относительно точки О (центр с
Описание слайда:

А1 О А Рис.1 Точки А и А1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА1 (рис.1).Точка О считается симметричной самой себе.

№ слайда 8 Точки А и А1 называются симметричными относительно прямой а (ось симметрии), есл
Описание слайда:

Точки А и А1 называются симметричными относительно прямой а (ось симметрии), если прямая а проходит через середину отрезка АА1 и перпендикулярна к этому отрезку (рис.2). Каждая точка прямой а считается симметричной самой себе.

№ слайда 9 А1 а О А Рис.2
Описание слайда:

А1 а О А Рис.2

№ слайда 10 Точки А и А1 называются симметричными относительно плоскости α (плоскость симмет
Описание слайда:

Точки А и А1 называются симметричными относительно плоскости α (плоскость симметрии), если плоскость α проходит через середину отрезка АА1 и перпендикулярна к этому отрезку (рис.3). Каждая точка плоскости α считается симметричной самой себе.

№ слайда 11 α А О А1 Рис.3
Описание слайда:

α А О А1 Рис.3

№ слайда 12 Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры
Описание слайда:

Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость симметрии), то говорят, что она обладает центральной (осевой, зеркальной) симметрией.

№ слайда 13 На рисунках 4,5,6 показаны центр О, ось а и плоскость α симметрии прямоугольного
Описание слайда:

На рисунках 4,5,6 показаны центр О, ось а и плоскость α симметрии прямоугольного параллелепипеда. Параллелепипед, не являющийся прямоугольным, но являющийся прямой призмой, имеет плоскость (или плоскости, если его основание – ромб), ось и центр симметрии.

№ слайда 14 А О А1 Рис.4
Описание слайда:

А О А1 Рис.4

№ слайда 15 А О А1 Рис.5 а
Описание слайда:

А О А1 Рис.5 а

№ слайда 16 А О А1 α Рис.6
Описание слайда:

А О А1 α Рис.6

№ слайда 17 Фигура может иметь один или несколько центров симметрии (осей, плоскостей симмет
Описание слайда:

Фигура может иметь один или несколько центров симметрии (осей, плоскостей симметрии). Например, куб имеет только один центр симметрии и несколько осей и плоскостей симметрии. Существуют фигуры, имеющие бесконечно много центров, осей или плоскостей симметрии. Простейшими из таких фигур являются прямая и плоскость. Любая точка плоскости является ее центром симметрии. Любая прямая (плоскость), перпендикулярная к данной плоскости, является ее осью (плоскостью) симметрии. С другой стороны, существуют фигуры, не имеющие центров, осей или плоскостей симметрии. Например, параллелепипед, не являющийся прямой призмой, не имеет оси симметрии, но имеет центр симметрии.

№ слайда 18 С симметрией мы часто встречаемся в природе, архитектуре, технике, быту. Так, мн
Описание слайда:

С симметрией мы часто встречаемся в природе, архитектуре, технике, быту. Так, многие здания симметричны относительно плоскости, например главное здание Московского государственного университета. Симметричны многие детали механизмов, например зубчатые колёса. Почти все кристаллы, встречающиеся в природе, имеют центр, ось или плоскость симметрии.(Рис.7)

№ слайда 19 Рис.7
Описание слайда:

Рис.7

№ слайда 20 … На данный момент Вы уже имеете представление о таких многогранниках как призма
Описание слайда:

… На данный момент Вы уже имеете представление о таких многогранниках как призма и пирамида. Сегодня на уроке у вас есть возможность значительно расширить свои знания о многогранниках, вы узнаете о так называемых правильных выпуклых многогранниках.

№ слайда 21 Выпуклый многогранник называется правильным, если все его грани - равные правиль
Описание слайда:

Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер. Всего существует пять видов правильных выпуклых многогранников. Их гранями являются правильные треугольники, правильные четырехугольники (квадраты) и правильные пятиугольники.

№ слайда 22 Докажем, что не существует правильного многогранника, гранями которого являются
Описание слайда:

Докажем, что не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n – угольники при n ≥ 6. Угол правильного многоугольника вычисляется по формуле αn = (180°(n-2)) : n. При каждой вершине многогранника не меньше трех плоских углов, и их сумма должна быть меньше 360°. При n=3 гранями многогранника служат правильные треугольники с углом, равным 60°. 60°·3 = 180°< 360°, 60°·4 = 240°< 360°, 60°·5 = 300°< 360°, 60°·6 = 360° В соответствии с этим получаем многогранники: правильный тетраэдр, правильный октаэдр, правильный икосаэдр.

№ слайда 23 Если n = 4, то α = 90°, грани многогранника – квадраты. 90°·3 = 270°< 360°, 90°·
Описание слайда:

Если n = 4, то α = 90°, грани многогранника – квадраты. 90°·3 = 270°< 360°, 90°·4=360°. Поэтому существует только один правильный многогранник – куб. Если n = 5 (грани многогранника – правильные пятиугольники), то α = 108°. 108°·3 = 324°< 360°, 108°·4 = 432°> 360°. В этом случае также имеем только один правильный многогранник – додекаэдр. Если n ≥ 6, то αn ≥ 120°, αn·3≥ 360°, и, следовательно, не существует правильного многогранника, гранями которого служат правильные n – угольники при n ≥ 6.

№ слайда 24 Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая ег
Описание слайда:

Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°.

№ слайда 25 Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая верш
Описание слайда:

Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине 240°

№ слайда 26 Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая в
Описание слайда:

Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300°

№ слайда 27 Куб (гексаэдр) составлен из шести квадратов. Каждая вершина куба является вершин
Описание слайда:

Куб (гексаэдр) составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270°.

№ слайда 28 Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая в
Описание слайда:

Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°.

№ слайда 29 Названия этих многогранников пришли из Древней Греции, и в них указывается число
Описание слайда:

Названия этих многогранников пришли из Древней Греции, и в них указывается число граней: «эдра» - грань «тетра» - 4 «гекса» - 6 «окта» - 8 «икоса» - 20 «додека» - 12

№ слайда 30 «Правильные многогранники в философской картине мира Платона» Правильные многогр
Описание слайда:

«Правильные многогранники в философской картине мира Платона» Правильные многогранники иногда называют платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном (ок.428 – ок.348 до н.э.). Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества – твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим. Это была одна из первых попыток ввести в науку идею систематизации.

№ слайда 31 А теперь от Древней Греции перейдём к Европе Х\/I – Х\/ІІ вв., когда жил и твори
Описание слайда:

А теперь от Древней Греции перейдём к Европе Х\/I – Х\/ІІ вв., когда жил и творил замечательный немецкий астроном, математик Иоганн Кеплер ( 1571 – 1630 ). «Кубок Кеплера» Представим себя на месте Кеплера. Перед ним различные таблицы – столбики цифр. Это результаты наблюдений движения планет Солнечной системы – как его собственных, так и великих предшественников – астрономов. В этом мире вычислительной работы он хочет найти некоторые закономерности. Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера.

№ слайда 32 В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса.
Описание слайда:

В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Результаты своих вычислений учёный опубликовал в книге «Тайна мироздания». Он считал, что тайна Вселенной раскрыта. Год за годом он уточнял свои наблюдения, перепроверял данные коллег, но наконец нашёл в себе силы отказаться от заманчивой гипотезы. Однако её следы просматриваются в третьем законе Кеплера где говорится о кубах средних расстояний от Солнца. Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы бредовых, не может существовать наука.

№ слайда 33 Модель Солнечной системы И. Кеплера
Описание слайда:

Модель Солнечной системы И. Кеплера

№ слайда 34 Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройств
Описание слайда:

Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80 – х гг. высказали московские инженеры В.Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро – додекаэдровую структуру Земли. (рис.8 )Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Многие залежи полезных ископаемых тянутся вдоль икосаэдро – додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник.

№ слайда 35 Рис.8
Описание слайда:

Рис.8

№ слайда 36 А сейчас от научных гипотез перейдем к научным фактам. Правильный многогранник Ч
Описание слайда:

А сейчас от научных гипотез перейдем к научным фактам. Правильный многогранник Число Граней Вершин Рёбер Тетраэдр 4 4 6 Куб 6 8 12 Октаэдр 8 6 12 Додекаэдр 12 20 30 Икосаэдр 20 12 30

№ слайда 37 Правильный многогранник Число Граней и вершин (г+в) Рёбер Тетраэдр 4 + 4 = 8 6 К
Описание слайда:

Правильный многогранник Число Граней и вершин (г+в) Рёбер Тетраэдр 4 + 4 = 8 6 Куб 6 + 8 = 14 12 Октаэдр 8 + 6 = 14 12 Додекаэдр 12 + 20 = 32 30 Икосаэдр 20 + 12 = 32 30

№ слайда 38 Г + В = Р + 2 Эта формула была подмечена уже Декартом в 1640 г., а позднее вновь
Описание слайда:

Г + В = Р + 2 Эта формула была подмечена уже Декартом в 1640 г., а позднее вновь открыта Эйлером ( 1752 ), имя которого с тех пор она носит. Формула Эйлера верна для любых выпуклых многогранников. Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников. Леонардо да Винчи (1452-1519) увлекался теорией многогранников и часто изображал их на своих полотнах. Сальвадоре Дали на картине «Тайная вечеря» изобразил И. Христа со своими учениками на фоне огромного прозрачного додекаэдра.

№ слайда 39 «Тайная вечеря»
Описание слайда:

«Тайная вечеря»

№ слайда 40
Описание слайда:

№ слайда 41
Описание слайда:

№ слайда 42
Описание слайда:

№ слайда 43 Правильные многогранники встречаются в живой природе. Например, скелет одноклето
Описание слайда:

Правильные многогранники встречаются в живой природе. Например, скелет одноклеточного организма феодарии по форме напоминает икосаэдр. Чем же вызвана такая природная геометризация феодарий? По – видимому, тем, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.

№ слайда 44 Феодария
Описание слайда:

Феодария

№ слайда 45 Радиолария
Описание слайда:

Радиолария

№ слайда 46 Правильные многогранники – самые выгодные фигуры. И природа этим широко пользует
Описание слайда:

Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов. Взять хотя бы поваренную соль, без которой мы не можем обойтись. Известно, что она растворима в воде, служит проводником электрического тока. А кристаллы поваренной соли имеют форму куба. При производстве алюминия пользуются алюминиево-калиевыми кварцами, монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана. Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Икосаэдр передаёт форму кристаллов бора. В своё время бор использовался для создания полупроводников первого поколения.

№ слайда 47 Элементы симметрии правильных многогранников Правильный тетраэдр не имеет центра
Описание слайда:

Элементы симметрии правильных многогранников Правильный тетраэдр не имеет центра симметрии, имеет три оси симметрии и шесть плоскостей симметрии. Куб имеет один центр симметрии – точку пересечения его диагоналей, девять осей симметрии, девять плоскостей симметрии. Правильный октаэдр, правильный икосаэдр и правильный додекаэдр имеют центр симметрии и несколько осей и плоскостей симметрии.

№ слайда 48 Тест 1.Какое из перечисленных геометрических тел не является правильным многогра
Описание слайда:

Тест 1.Какое из перечисленных геометрических тел не является правильным многогранником? а) правильный тетраэдр; б) правильный гексаэдр; в) правильная призма; г) правильный додекаэдр; д) правильный октаэдр. 2.Выберите верное утверждение: а) правильный многогранник, у которого грани являются правильными шестиугольниками, называется правильным гексаэдром;

№ слайда 49 б) сумма плоских углов при вершине правильного додекаэдра равна 324°; в) куб име
Описание слайда:

б) сумма плоских углов при вершине правильного додекаэдра равна 324°; в) куб имеет два центра симметрии – по одному в каждом основании; г) правильный тетраэдр состоит из 8 правильных треугольников; д) всего существует 6 видов правильных многогранников. 3. Какое из следующих утверждений неверно? а) сумма двугранных углов правильного тетраэдра и правильного октаэдра равна 180°; б) центры граней куба являются вершинами правильного октаэдра;

№ слайда 50 в) правильный додекаэдр состоит из 12 правильных пятиугольников; г) сумма плоски
Описание слайда:

в) правильный додекаэдр состоит из 12 правильных пятиугольников; г) сумма плоских углов при каждой вершине правильного икосаэдра равна 270°; д) куб и правильный гексаэдр – это одно и то же. Подведём итоги. С какими новыми геометрическими телами мы сегодня познакомились? - Почему Л.Кэрролл так высоко оценил значение этих многогранников? Домашнее задание: п.35, п.36,п.37. №276-278 (устно)

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru