PPt4Web Хостинг презентаций

Главная / Алгебра / Свойство периодичности
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Свойство периодичности


Скачать эту презентацию

Презентация на тему: Свойство периодичности


Скачать эту презентацию



№ слайда 1 Свойство периодичности
Описание слайда:

Свойство периодичности

№ слайда 2 Периодические функции В природе и технике часто встречаются явления, повторяющие
Описание слайда:

Периодические функции В природе и технике часто встречаются явления, повторяющиеся по истечении некоторого промежутка времени. Например, при вращении Земли вокруг Солнца её расстояние от солнца всё время меняется, но после полного оборота Земля оказывается на том же расстоянии от солнца, сто и год тому назад. Возвращается на своё место после полного оборота и лопасть турбины. Такие периодические повторяющиеся процессы описываются периодическими функциями.

№ слайда 3 Периодическая функция ― функция, повторяющая свои значения через какой-то ненуле
Описание слайда:

Периодическая функция ― функция, повторяющая свои значения через какой-то ненулевой период, то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа (периода).Все тригонометрические функции являются периодическими.

№ слайда 4 Периодические функции Определение 1Говорят, что функция y=f(x), x принадлежит Х
Описание слайда:

Периодические функции Определение 1Говорят, что функция y=f(x), x принадлежит Х имеет период Т, если для любого x принадлежит Х выполняются равенства f(x-T)=f(x)=f(x+T).Из этого определения следует, что если функция с периодом Т определена в точке х, то она определена в точках х+Т ,х-Т.Любая функция имеет период, равный нулю(при Т=0 равенство превращается в тождество f(x-0)=f(x)=f(x+0)).

№ слайда 5 Периодические функции Определение 2Функцию, имеющую отличный от нуля период Т, н
Описание слайда:

Периодические функции Определение 2Функцию, имеющую отличный от нуля период Т, называют периодической.Если функция y=f(x), x принадлежит Х имеет период Т, то любое число, кратное Т (т.е. число вида kT, k принадлежит Z), также является её периодом.

№ слайда 6 Периодические функции Периодическая функция имеет бесконечное множество различны
Описание слайда:

Периодические функции Периодическая функция имеет бесконечное множество различных периодов. В большинстве случаев среди положительных периодов периодической функции есть наименьший . Его называют основным периодом этой функции, все остальные её периоды кратны основному периоду.

№ слайда 7 График периодической функции обладает следующей особенностью. Если Т - основной
Описание слайда:

График периодической функции обладает следующей особенностью. Если Т - основной период функции y=f(x), то для построения её графика достаточно построить ветвь графика на одном из промежутков длины Т, а затем выполнить параллельный перенос этой ветви вдоль оси х на +Т,+2Т,+3Т, … . Чаще всего в качестве такого промежутка длины Т выбирают промежуток с концами в точках (-Т/2;0)и(Т/2;0).

№ слайда 8 Но не у всякой периодической функции есть основной период. Классический пример -
Описание слайда:

Но не у всякой периодической функции есть основной период. Классический пример - функция Дирихле y=d (x), где 1,если х- рациональное число;d (x)= 0,если х- иррациональное число.

№ слайда 9 Любое рациональное число r является периодом этой функции. В самом деле, если х-
Описание слайда:

Любое рациональное число r является периодом этой функции. В самом деле, если х-рациональное число, то х-r, x+r –рациональные числа, а потому d (x-r)=d (x)=d (x+r)=1. Если же х – иррациональное число, то х-r, х+r – иррациональные числа, а потому d (x-r)=d (x)=d (x+r) = 0.

№ слайда 10 Итак, любое рациональное число является периодом функции Дирихле. Но среди полож
Описание слайда:

Итак, любое рациональное число является периодом функции Дирихле. Но среди положительных рациональных чисел нет наименьшнго числа, значит, у периодической функции Дирихле нет основного периода.

№ слайда 11 Спасибо за внимание
Описание слайда:

Спасибо за внимание

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru