PPt4Web Хостинг презентаций

Главная / Математика / Действительные числа
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Действительные числа


Скачать эту презентацию

Презентация на тему: Действительные числа


Скачать эту презентацию

№ слайда 1 Выполнила: учитель математики ГОУ СОШ № 457 Ж.Ю. Магаз Санкт-Петербург 2010
Описание слайда:

Выполнила: учитель математики ГОУ СОШ № 457 Ж.Ю. Магаз Санкт-Петербург 2010

№ слайда 2
Описание слайда:

№ слайда 3 Натуральные числа - это числа счета. N={1,2,…n,…}. Натуральные числа - это числа
Описание слайда:

Натуральные числа - это числа счета. N={1,2,…n,…}. Натуральные числа - это числа счета. N={1,2,…n,…}. Заметим, что множество натуральных чисел замкнуто относительно сложения и умножения, т.е. сложение и умножение выполняются всегда, а вычитание и деление в общем случае не выполняются

№ слайда 4 Введем в рассмотрение новые числа: Введем в рассмотрение новые числа: 1) число 0
Описание слайда:

Введем в рассмотрение новые числа: Введем в рассмотрение новые числа: 1) число 0 (ноль), 2) число (-n), противоположное натуральному n. При этом полагаем: n+(-n)=(-n)+n=0, -(-n)=n. Тогда множество целых чисел можно записать так: Z ={…,-n,…-2,-1,0,1,2,…,n,…}. Заметим также, что: Это множество замкнуто относительно сложения, вычитания и умножения, т.е. Из множества целых чисел выделим два подмножества: 1) множество четных чисел 2) множество несетных чисел

№ слайда 5 В общем случае действие деления в множестве целых чисел не выполняется, но извес
Описание слайда:

В общем случае действие деления в множестве целых чисел не выполняется, но известно, что деление с остатком можно выполнить всегда, кроме деления на 0. В общем случае действие деления в множестве целых чисел не выполняется, но известно, что деление с остатком можно выполнить всегда, кроме деления на 0. Определение деления с остатком. Говорят, что целое число m делится на целое число n с остатком, если найдутся два числа q и p, такие что: (*) Хорошо известен алгоритм деления с остатком. Замечание: если r=0, то будем говорить, что m делится нацело на n.

№ слайда 6 Разделить с остатком m на n. Разделить с остатком m на n. 1). m=190, n=3 190 3 1
Описание слайда:

Разделить с остатком m на n. Разделить с остатком m на n. 1). m=190, n=3 190 3 18 6 3 10 9 1 q=63, r=1, 1<3 Проверка: 190=3*63+1 2). m=13, n=5 Подберем q и формуле (*): 13=5q+r =>q=2, r=3 (3<5) 13=4*(-4)+1

№ слайда 7 Множество рациональных чисел можно представить в виде: Множество рациональных чи
Описание слайда:

Множество рациональных чисел можно представить в виде: Множество рациональных чисел можно представить в виде: В частности, Таким образом, Множество рациональных чисел замкнуто относительно сложения, вычитания, умножения и деления (кроме случая деления на 0).

№ слайда 8 Но в множестве рациональных чисел нельзя, например, измерить гипотенузу прямоуго
Описание слайда:

Но в множестве рациональных чисел нельзя, например, измерить гипотенузу прямоугольного треугольника с катетам . Но в множестве рациональных чисел нельзя, например, измерить гипотенузу прямоугольного треугольника с катетам . По теореме Пифагора гипотенуза будет равна .Но число не будет рациональным, так как ни для каких m и n. Нельзя решить уравнение . Нельзя измерить длину окружности и т.д. Заметим, что всякое рациональное число можно представить в виде конечной или бесконечной периодической десятичной дроби.

№ слайда 9 Числа, которые представляются бесконечной непериодической дробью, будем называть
Описание слайда:

Числа, которые представляются бесконечной непериодической дробью, будем называть иррациональными. Числа, которые представляются бесконечной непериодической дробью, будем называть иррациональными. Множество иррациональных чисел обозначим Для иррациональных чисел нет единой формы обозначения. Отметим два иррациональных числа, которые обозначаются буквами – это числа и е.

№ слайда 10 Отношение длины окружности к диаметру есть величина постоянная, равная числу Отн
Описание слайда:

Отношение длины окружности к диаметру есть величина постоянная, равная числу Отношение длины окружности к диаметру есть величина постоянная, равная числу

№ слайда 11 Если рассмотреть числовую последовательность: Если рассмотреть числовую последов
Описание слайда:

Если рассмотреть числовую последовательность: Если рассмотреть числовую последовательность: с общим членом последовательности то с ростом п значения будут возрастать, но никогда не будет больше 3. Это означает, что последовательность ограничена. Такая последовательность имеет предел, который равен числу е.

№ слайда 12 Известно, что мощность иррациональных чисел больше мощности рациональных, т.е. И
Описание слайда:

Известно, что мощность иррациональных чисел больше мощности рациональных, т.е. Иррациональных чисел «больше», чем рациональных. Кроме того, как бы ни были близки два рациональных числа, между ними всегда есть иррациональное, т.е. Известно, что мощность иррациональных чисел больше мощности рациональных, т.е. Иррациональных чисел «больше», чем рациональных. Кроме того, как бы ни были близки два рациональных числа, между ними всегда есть иррациональное, т.е. Примеры иррациональных чисел: (золотое сечение) и т.д.

№ слайда 13 Множество вещественных чисел – это объединение множества рациональных чисел. Мно
Описание слайда:

Множество вещественных чисел – это объединение множества рациональных чисел. Множество вещественных чисел – это объединение множества рациональных чисел. Вывод: (см. рис. 1)

№ слайда 14 1) Пусть на числовой оси точка А имеет координату а. Расстояние от точки начала
Описание слайда:

1) Пусть на числовой оси точка А имеет координату а. Расстояние от точки начала отсчета О до точки А называется модулем вещественного числа а и обозначается |a|. 1) Пусть на числовой оси точка А имеет координату а. Расстояние от точки начала отсчета О до точки А называется модулем вещественного числа а и обозначается |a|. 2) Раскрытие модуля происходит по правилу:

№ слайда 15 Например: Например: Замечание. Определение модуля можно расширить: Пример. Раскр
Описание слайда:

Например: Например: Замечание. Определение модуля можно расширить: Пример. Раскрыть знак модуля.

№ слайда 16 1) 1) 2) 3) 4) 5) 6)
Описание слайда:

1) 1) 2) 3) 4) 5) 6)

№ слайда 17 Пример 1. Вычислить Пример 1. Вычислить Пример 2. Раскрыть знак модуля Пример 3.
Описание слайда:

Пример 1. Вычислить Пример 1. Вычислить Пример 2. Раскрыть знак модуля Пример 3. Вычислить 1) 2) 3)

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru