Метод интервалов Подготовила:учитель математикиМОУ сош №30 имени А.И.КолдуноваКутоманова Е.М.2010-2011 учебный год
Рассмотрим функцию f(х)=(х+3)(х-1)(х-2). D(f)- любое число, нули функции- числа -3; 1; 2. Нули функции разбивают всю область определения на промежутки: (-∞;-3),(-3;1),(1;2), (2;∞).Выясним, какой знак имеет функция на каждом из указанных промежутков:f(-4)=-1·(-5)(-6)=-30<0; f(0)=3·(-1)·(-2)=6>0;f(1,5)=4,5·0,5·(-0,5)<0; f(3)=6·2·1>0;
ТЕОРЕМА :Если функция f непрерывна на интервале (a;b) и не обращается в 0 на этом интервале, то f сохраняет на нём постоянный знак. Необходимым условием смены знака в точке С является : f (c)=0 Однако , это не является достаточным условием : функция f может и не менять своего знака при переходе через точку С
Методом интервалов можно решать неравенства вида: f(х)>0 , f(х)0 f(х)<0 , f(х)0
1.Решим неравенство: (х+4)(х-3)>0 f(х)= (х+4)(х-3),D(f)- любое число, -4 и 3- нули функции, которые разбивают всю область определения на промежутки: (-∞;-4), (-4;3), (3;∞). Определим знак функции на каждом промежутке: f(-5)=-1·(-8)=8>0; f(0)=4·(-3)=-12<0;f(4)=8·1=8>0. Ответ (-∞;-4)U (3; ).
2.Решим неравенство: (х+5)(х+1)(х-3)<0. f(х)=(х+5)(х+1)(х-3),D(f)-любое число, -5;-1;3- нули функции, которые разбивают всю область определения на промежутки: (-∞;-5), (-5;-1), (-1;3).(3;∞). Определим знак функции на каждом промежутке: f(-6)=-1·(-5)·(-9)=-45<0, f(-2)=3·(-1)·(-5)=15>0, f(0)=5·1·(-3)=-15<0,f(4)=9·5·6=270>0. Ответ (-∞;-5)U (-1;3).
№3. Решим неравенство D(f)- любое число, кроме -5, 3- нуль функции.
№4. Решим неравенство D(f)- любое число, кроме -5,-13-нуль функции.