«Линейная регрессия и корреляция: смысл и оценка параметров»
F критерий Фишера - оценивает качество уравнения регрессии - состоит в проверке гипотезы Но (о том, что коэффициент регрессии равен нулю, т.е. b=0, т.е. фактор х не оказывает влияния на результат у ). F критерий Фишера - оценивает качество уравнения регрессии - состоит в проверке гипотезы Но (о том, что коэффициент регрессии равен нулю, т.е. b=0, т.е. фактор х не оказывает влияния на результат у ).
Расчету F-критерия предшествует анализ дисперсии. Центральное место в нем занимает разложение общей суммы квадратов отклонений на две части «объясненную» и «необъясненную». Общая объясненная остаточная (необъясненная)
Любая сумма квадратов отклонений связана с числом степеней свободы – df, т.е. с числом свободы независимого варьирования признака. Для общей суммы квадратов требуется (n-1) число отклонений.
Для расчета df объясненной суммы квадратов имеем: Число степеней свободы равно 1.
Число степеней свободы остаточной суммы квадратов = число степ. свободы для общей суммы квадратов – число степ. свободы для объясненной регрессии.
дисперсии на одну степень свободы дисперсии на одну степень свободы
Значение F-критерия признается достоверным, если оно больше табличного. В этом случае гипотеза H0 отклоняется.
Если Fтабл<Fфакт, то Но - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл<Fфакт, то Но - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл>Fфакт, то гипотеза Но не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
Таблица значений F-критерия Фишера при уровне значимости α =0,05 Таблица значений F-критерия Фишера при уровне значимости α =0,05
ПРИМЕР (количество факторов – 1) Дисперсионный анализ результатов регрессии
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента каждого из показателей и доверительные интервалы. Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента каждого из показателей и доверительные интервалы. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
Сравнивая фактическое и критическое (табличное) значения t-статистики - tтабл и tфакт - принимаем или отвергаем гипотезу Но. Сравнивая фактическое и критическое (табличное) значения t-статистики - tтабл и tфакт - принимаем или отвергаем гипотезу Но. Если tтабл < tфакт то гипотеза Ho - о незначимости параметра отклоняется, т.е. a, b и не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если tтабл > tфакт то гипотеза Но не отклоняется и признается случайная природа формирования а, b или rxy .
доверительный интервал доверительный интервал для расчета доверительного интервала определяем предельную ошибку для каждого показателя для коэффициентов регрессии границы доверительного интервала составят:
Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения. Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.
Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических (дает оценку качества построенной модели ): Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических (дает оценку качества построенной модели ): Допустимый предел значений - не более 8-10%.