Устная работа x² + 4x - 6 = 0 2x² + 6x = 6 7x² - 14x = 0 x² + 5x - 1= 0 3x² - 5x + 19 = 0 x² - 13x = 0
Дано: х₁ и х₂ - корни уравнения Дано: х₁ и х₂ - корни уравнения
План доказательства: План доказательства: Записать формулы для нахождения x₁и x₂; Найти сумму корней: x₁+ x₂; Найти произведение корней: x₁· x₂.
Задание 1. Выберите уравнение сумма корней которого равна -6, а произведение равно -11 Задание 1. Выберите уравнение сумма корней которого равна -6, а произведение равно -11 х² - 6х + 11 = 0 х² + 6х - 11 = 0 х² + 6х + 11 = 0 х² - 11х - 6 = 0 х² + 11х - 6 = 0
1) p = -6, q = -5 1) p = -6, q = -5 2) p = 5, q = 6 3) p = 6, q = 5 4) p = -5, q = -6 5) p = 5, q = -6 6) p = -6, q = -5
Решение: Решение: б) y² – 19 =0, D > 0 p = 0, q = - 19 х₁ + х ₂= 0, х₁ ∙ х₂ = -19 д) 2x² – 9x – 10 = 0 х² – 4,5х – 2 = 0, D > 0 p = - 4,5, q = - 2 х₁ + х ₂= 4,5, х₁ ∙ х₂ = -2
х² – 2х – 8 = 0 х² – 2х – 8 = 0
Прямая теорема: Прямая теорема:
Применение теоремы Проверяем, правильно ли найдены корни уравнения Определяем знаки корней уравнения не решая его Устно находим корни приведенного квадратного уравнения Составляем квадратное уравнение с заданными корнями
Теорема Виета Числа х₁ и х₂ являются корнями квадратного уравнения х² + вх + с =0 тогда и только тогда, когда х₁ + х₂ = х₁ ∙ х₂ =