PPt4Web Хостинг презентаций

Главная / Геометрия / Прямоугольный треугольник
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Прямоугольный треугольник


Скачать эту презентацию

Презентация на тему: Прямоугольный треугольник


Скачать эту презентацию

№ слайда 1 Прямоугольный треугольник
Описание слайда:

Прямоугольный треугольник

№ слайда 2 С о д е р ж а н и е Из истории математики Определения Некоторые свойства прямоуг
Описание слайда:

С о д е р ж а н и е Из истории математики Определения Некоторые свойства прямоугольных треугольников Признаки равенства прямоугольных треугольников Задачи по готовым чертежамКонтрольный тестЭто интересно Об авторе

№ слайда 3 Из истории математики Прямоугольный треугольник занимает почётное место в вавило
Описание слайда:

Из истории математики Прямоугольный треугольник занимает почётное место в вавилонской геометрии, упоминание о нём часто встречается в папирусе Ахмеса. Термин гипотенуза происходит от греческого hypoteinsa, означающего тянущаяся под чем либо , стягивающая. Слово берёт начало от образа древнеегипетских арф, на которых струны натягивались на концы двух взаимно перпендикулярных подставок. Термин катет происходит от греческого слова «катетос », которое означало отвес , перпендикуляр. В средние века словом катет означали высоту прямоугольного треугольника, в то время, как другие его стороны называли гипотенузой, соответственно основанием. В XVII веке слово катет начинает применяться в современном смысле и широко распространяется, начиная с XVIII века. Евклид употребляет выражения: «стороны, заключающие прямой угол», - для катетов;«сторона, стягивающая прямой угол», - для гипотенузы.

№ слайда 4 Определения Треугольник – это геометрическая фигура, состоящая из трёх точек, не
Описание слайда:

Определения Треугольник – это геометрическая фигура, состоящая из трёх точек, не лежащих на одной прямой, и трёх отрезков, соединяющих эти точки.Если один из углов треугольника прямой, то треугольник называется прямоугольным.Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой, а две другие – катетами.

№ слайда 5 Некоторые свойства прямоугольных треугольников1. Сумма двух острых углов прямоуг
Описание слайда:

Некоторые свойства прямоугольных треугольников1. Сумма двух острых углов прямоугольного треугольника равна 900.2. Катет прямоугольного треугольника, лежащий против угла в 300, равен половине гипотенузы.3. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 300.

№ слайда 6 Признаки равенствапрямоугольных треугольников Если катеты одного прямоугольного
Описание слайда:

Признаки равенствапрямоугольных треугольников Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны.3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

№ слайда 7 Признаки равенствапрямоугольных треугольниковЕсли катеты одного прямоугольного т
Описание слайда:

Признаки равенствапрямоугольных треугольниковЕсли катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны.3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

№ слайда 8 Если катеты одного прямоугольного треугольника соответственно равны катетам друг
Описание слайда:

Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.следует из первого признака равенства треугольников (по двум сторонам и углу между ними).

№ слайда 9 Если катет и прилежащий к нему острый угол одного прямоугольного треугольника со
Описание слайда:

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны.следует из второго признака равенства треугольников (по стороне и прилежащим к ней углам)

№ слайда 10 Если гипотенуза и острый угол одного прямоугольного треугольника соответственно
Описание слайда:

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.т.к. сумма острых углов прямоугольного треугольника равна 90°, то два других острых угла также равны,

№ слайда 11 Если гипотенуза и катет одного прямоугольного треугольника соответственно равны
Описание слайда:

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.Доказательство: Наложим ∆ А1В1С1 на треугольник ∆ АВС. Т.к. АС = А1С1 и АВ = А1В1, то они при наложении совпадут.Тогда вершина А1 совместиться с вершиной А. Но и тогда и вершины В1 и В также совместятся.Следовательно, треугольники равны.

№ слайда 12 Задачи по готовым чертежам
Описание слайда:

Задачи по готовым чертежам

№ слайда 13 Контрольный тест 1. Прямоугольным называется треугольник, у которого а) все углы
Описание слайда:

Контрольный тест 1. Прямоугольным называется треугольник, у которого а) все углы прямые; б) два угла прямые; в) один прямой угол.

№ слайда 14 Контрольный тест 2. В прямоугольном треугольнике всегда а) два угла острых и оди
Описание слайда:

Контрольный тест 2. В прямоугольном треугольнике всегда а) два угла острых и один прямой; б) один острый угол, один прямой и один тупой угол; в) все углы прямые.

№ слайда 15 Контрольный тест 3. Стороны прямоугольного треугольника, образующие прямой угол,
Описание слайда:

Контрольный тест 3. Стороны прямоугольного треугольника, образующие прямой угол, называются а) сторонами треугольника; б) катетами треугольника; в) гипотенузами треугольника.

№ слайда 16 Контрольный тест 4. Сторона прямоугольного треугольника, противолежащая прямому
Описание слайда:

Контрольный тест 4. Сторона прямоугольного треугольника, противолежащая прямому углу, называется а) стороной треугольника; б) катетом треугольника; в) гипотенузой треугольника.

№ слайда 17 Контрольный тест 5. Сумма острых углов прямоугольного треугольника равна а) 180°
Описание слайда:

Контрольный тест 5. Сумма острых углов прямоугольного треугольника равна а) 180°; б) 100°;в) 90°.

№ слайда 18 Об авторе Данная разработка выполнена учителем математики МОУ «Средняя общеобраз
Описание слайда:

Об авторе Данная разработка выполнена учителем математики МОУ «Средняя общеобразовательная школа № 33» г.Брянска Кулешовой Галиной Николаевной.Все отзывы, предложения и вопросы вы можете направить по адресу:

№ слайда 19 Папирус Ахмеса Математический папирус Ахмеса — древнеегипетское учебное руководс
Описание слайда:

Папирус Ахмеса Математический папирус Ахмеса — древнеегипетское учебное руководство по арифметике и геометрии периода Среднего царства, переписанное около 1650 до н. э. писцом по имени Ахмес на свиток папируса длиной 5,25 м. и шириной 33 см. Папирус Ахмеса был обнаружен в 1858 шотландским египтологом Генри Риндом и часто называется папирусом Райнда по имени его первого владельца. В 1870 папирус был расшифрован, переведён и издан. Ныне большая часть рукописи находится в Британском музеев Лондоне, а вторая часть — в Нью - Йорке. Этот документ остается основным источником информации по математике древнего Египта. Он содержит чертежи треугольников с указаниями углов и формулами нахождения площадей. Во вступительной части папируса Райнда объясняется, что он посвящён «совершенному и основательному исследованию всех вещей, пониманию их сущности, познанию их тайн». Все задачи, приведённые в тексте, имеют в той или другой степени практический характер и могли быть применены в строительстве, размежевании земельных наделов и других сферах жизни и производства. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами, пропорциональное деление, нахождение отношений.

№ слайда 20 Е В К Л И Д Евклид (Eνκλειδηζ), древнегреческий математик, автор первого из доше
Описание слайда:

Е В К Л И Д Евклид (Eνκλειδηζ), древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Сведения об Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в III веке до н. э. Евклид – первый математик александрийской школы. Его главная работа «Начала» (в латинизированной форме – «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвел итог предшествующему развитию греческой математики и создал фундамент дальнейшего развития математики. Из других сочинений по математике надо отметить работу «О делении фигур», сохранившуюся в арабском переводе, четыре книги «Конические сечения», материал которых вошел в произведение того же названия Аполлония Пергского, а также «Поризмы», представление о которых можно получить из «Математического собрания» Паппа Александрийского. Евклид – автор работ по астрономии, оптике, музыке и др. Дошедшие до нас произведения Евклида собраны в издании «Euclidis opera omnia», ed. J. L. Heibert et Н. Menge, v. 1–9, 1883–1916, дающем их греческие подлинники, латинские переводы и комментарии позднейших авторов.

№ слайда 21 Это интересно Треугольник – это многоугольник с тремя сторонами (или тремя углам
Описание слайда:

Это интересно Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.В любом треугольнике:   1.  Против большей стороны лежит больший угол, и наоборот.2.  Против равных сторон лежат равные углы, и наоборот.3.  Сумма углов треугольника равна 180 º4.  Продолжая одну из сторон треугольника, получаем внешний угол. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a < b + c,  a > b – c;  b < a + c,  b > a – c;  c < a + b,  c > a – b ).

№ слайда 22 Ответ не правильный.Более внимательно изучи данную тему!
Описание слайда:

Ответ не правильный.Более внимательно изучи данную тему!

№ слайда 23 Вы верно ответили на все вопросы !
Описание слайда:

Вы верно ответили на все вопросы !

№ слайда 24 Желаю удачи в изучении математики !
Описание слайда:

Желаю удачи в изучении математики !

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru