PPt4Web Хостинг презентаций

Главная / Алгебра / Неравенства
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Неравенства


Скачать эту презентацию

Презентация на тему: Неравенства


Скачать эту презентацию

№ слайда 1
Описание слайда:

№ слайда 2 1). Определение 1). Определение 2). Виды 3). Свойства числовых неравенств 4). Ос
Описание слайда:

1). Определение 1). Определение 2). Виды 3). Свойства числовых неравенств 4). Основные свойства неравенств 4). Типы 5). Способы решения

№ слайда 3 Запись вида а>в или а<в называется неравенством.
Описание слайда:

Запись вида а>в или а<в называется неравенством.

№ слайда 4 Неравенства вида а≥в, а≤в называется …… Неравенства вида а>в, а<в называет
Описание слайда:

Неравенства вида а≥в, а≤в называется …… Неравенства вида а>в, а<в называется……

№ слайда 5 1). Если а>в, то в<а. 1). Если а>в, то в<а. 2).Если а>в, в>с,
Описание слайда:

1). Если а>в, то в<а. 1). Если а>в, то в<а. 2).Если а>в, в>с, то а>с. 3). Если а>в, с-любое число, то а+с>в+с. 4). Если а>в, с>х, то а+с>в+х. 5). Если а>в, с>0, то ас>вс. 6). Если а>в, с<0, то ас<вс. 7). Если а>о, с>0,то > . 8). Если а>о, с>0, а>с, то >

№ слайда 6 1). Любой член неравенства можно переносить из одной части неравенства в другую,
Описание слайда:

1). Любой член неравенства можно переносить из одной части неравенства в другую, изменив его знак на противоположный, при этом знак неравенства не меняется. 1). Любой член неравенства можно переносить из одной части неравенства в другую, изменив его знак на противоположный, при этом знак неравенства не меняется.

№ слайда 7 2).Обе части неравенства можно умножить или разделить на одно и тоже положительн
Описание слайда:

2).Обе части неравенства можно умножить или разделить на одно и тоже положительное число, при этом знак неравенства не изменится. Если это число отрицательное, то знак неравенства изменится на противоположное. 2).Обе части неравенства можно умножить или разделить на одно и тоже положительное число, при этом знак неравенства не изменится. Если это число отрицательное, то знак неравенства изменится на противоположное.

№ слайда 8
Описание слайда:

№ слайда 9 I).Линейное неравенство. I).Линейное неравенство. 1). х+4<0; 2).2х+4≥6; х<
Описание слайда:

I).Линейное неравенство. I).Линейное неравенство. 1). х+4<0; 2).2х+4≥6; х<-4; 2х≥-2; -4 х х≥-1; Ответ: (-∞;-4). -1 х Ответ: [-1;+∞).

№ слайда 10 1). х+2≥2,5х-1; 1). х+2≥2,5х-1; 2).х- 0,25(х+4)+0,5(3х-1)>3; 3). 4).х²+х<х
Описание слайда:

1). х+2≥2,5х-1; 1). х+2≥2,5х-1; 2).х- 0,25(х+4)+0,5(3х-1)>3; 3). 4).х²+х<х(х-5)+2; 5).

№ слайда 11 1.2(х-3)-1-3(х-2)-4(х+1)>0; 1.2(х-3)-1-3(х-2)-4(х+1)>0; 2.0,2(2х+2)-0,5(х-
Описание слайда:

1.2(х-3)-1-3(х-2)-4(х+1)>0; 1.2(х-3)-1-3(х-2)-4(х+1)>0; 2.0,2(2х+2)-0,5(х-1)<2. 3. Найдите наименьшие натуральные числа, являющиеся решениями неравенства 3х-3<1,5х+4.

№ слайда 12 II).Квадратные неравенства. II).Квадратные неравенства. Способы решения:
Описание слайда:

II).Квадратные неравенства. II).Квадратные неравенства. Способы решения:

№ слайда 13 1.1).Метод интервалов 1.1).Метод интервалов (для решения квадратного уравнения)
Описание слайда:

1.1).Метод интервалов 1.1).Метод интервалов (для решения квадратного уравнения) ах²+вх+с>0 1). Разложим данный многочлен на множители, т.е. представим в виде а(х- )(х- )>0. 2).корни многочлена нанести на числовую ось; 3). Определить знаки функции в каждом из промежутков; 4). Выбрать подходящие интервалы и записать ответ.

№ слайда 14 x²+x-6=0; (х-2)(х+3)=0; x²+x-6=0; (х-2)(х+3)=0; Ответ: (-∞;-3)v(2;+∞).
Описание слайда:

x²+x-6=0; (х-2)(х+3)=0; x²+x-6=0; (х-2)(х+3)=0; Ответ: (-∞;-3)v(2;+∞).

№ слайда 15 1). х(х+7)≥0; 1). х(х+7)≥0; 2).(х-1)(х+2)≤0; 3).х-х²+2<0; 4).-х²-5х+6>0; 5
Описание слайда:

1). х(х+7)≥0; 1). х(х+7)≥0; 2).(х-1)(х+2)≤0; 3).х-х²+2<0; 4).-х²-5х+6>0; 5).х(х+2)<15.

№ слайда 16 Домашняя работа: Домашняя работа: Сборник 1).стр. 109 № 128-131 Сборник 2).стр.1
Описание слайда:

Домашняя работа: Домашняя работа: Сборник 1).стр. 109 № 128-131 Сборник 2).стр.111 №3.8-3.10; 3.22;3.37-3.4

№ слайда 17 1). Определить направление ветвей параболы, по знаку первого коэффициента квадра
Описание слайда:

1). Определить направление ветвей параболы, по знаку первого коэффициента квадратичной функции. 1). Определить направление ветвей параболы, по знаку первого коэффициента квадратичной функции. 2).Найти корни соответствующего квадратного уравнения; 3).Построить эскиз графика и по нему определить промежутки, на которых квадратичная функция принимает положительные или отрицательные значения.

№ слайда 18 х²+5х-6≤0 х²+5х-6≤0 y= х²+5х-6 (квадратичная функция, график парабола, а=1, ветв
Описание слайда:

х²+5х-6≤0 х²+5х-6≤0 y= х²+5х-6 (квадратичная функция, график парабола, а=1, ветви направлены вверх) х²+5х-6=0; корни этого уравнения: 1 и -6. у + + -6 1 x Ответ: [-6;1].

№ слайда 19 1).х²-3х<0; 1).х²-3х<0; 2).х²-4х>0; 3).х²+2х≥0; 4). -2х²+х+1≤0;
Описание слайда:

1).х²-3х<0; 1).х²-3х<0; 2).х²-4х>0; 3).х²+2х≥0; 4). -2х²+х+1≤0;

№ слайда 20 Домашнее задание: Домашнее задание: Сборник 1).стр. 115 №176-179. работы №47,45,
Описание слайда:

Домашнее задание: Домашнее задание: Сборник 1).стр. 115 №176-179. работы №47,45,42,17,12 (задание №5) Сборник 2).стр. 116 № 4.4,4.5, 4.11. работы №6, задание 13.

№ слайда 21 1) Раскладывают на линейные множители числитель P(x) и знаменатель Q(x). Ес
Описание слайда:

1) Раскладывают на линейные множители числитель P(x) и знаменатель Q(x). Если это удается, то дальше поступают так. 1) Раскладывают на линейные множители числитель P(x) и знаменатель Q(x). Если это удается, то дальше поступают так. 2) На числовую ось наносят корни всех линейных множителей. На каждом из промежутков, на которые эти точки разбивают ось, дробь P(x)/ Q(x). сохраняет знак 3) Определяют знак дроби на каждом промежутке. 4) Записывают ответ.

№ слайда 22 Сборник 1).стр. 109 №132 Сборник 1).стр. 109 №132 Сборник 2). Стр. 112-113 № 3.2
Описание слайда:

Сборник 1).стр. 109 №132 Сборник 1).стр. 109 №132 Сборник 2). Стр. 112-113 № 3.20, 3.21, 3.39-3.42

№ слайда 23
Описание слайда:

№ слайда 24 1). Содержащие линейные неравенства. 1). Содержащие линейные неравенства. 2). Со
Описание слайда:

1). Содержащие линейные неравенства. 1). Содержащие линейные неравенства. 2). Содержащие квадратное(рациональное) неравенство и линейное неравенство. 3). Содержащие квадратные неравенства. 4). Двойное неравенство, которое решается с помощью систем. 5). Неравенства с модулем

№ слайда 25 1). 5х+1>6 5x>5 x>1 1). 5х+1>6 5x>5 x>1 2x-4<3 ; 2x<7 ;
Описание слайда:

1). 5х+1>6 5x>5 x>1 1). 5х+1>6 5x>5 x>1 2x-4<3 ; 2x<7 ; x<3,5. 1 3,5 x Ответ: (1;3,5). Задания: Сборник 1). Стр. 111№139-142 стр. 170-172 № 711-766 Сборник 2).стр. 110 № 3.4-3.7

№ слайда 26 2). х²-1>0 (x-1)(x+1)>0 2). х²-1>0 (x-1)(x+1)>0 x+4<0; x<-4; +
Описание слайда:

2). х²-1>0 (x-1)(x+1)>0 2). х²-1>0 (x-1)(x+1)>0 x+4<0; x<-4; + - + -4 -1 1 x Ответ: (-∞;-4). Задания: Сборник 1).стр. 111 № 143-145 Сборник 2). Стр. 112-113 №3.24, 3.25

№ слайда 27 3). х²-4>0 3). х²-4>0 x²-3x+5<0. Решаем каждое квадратное неравенство в
Описание слайда:

3). х²-4>0 3). х²-4>0 x²-3x+5<0. Решаем каждое квадратное неравенство в отдельности. Изображаем решения на числовой прямой и смотрим пересечения этих решений. Записываем ответ. Задания: Сборник 1). Стр. 111 № 146-147 Сборник 2).стр. 113, 115 № 3.27, 3.29, 3.47, 3.48

№ слайда 28 4). -12<x-1<1 4). -12<x-1<1 x-1<1 x<2 Ответ: (-11;2). x-1>-
Описание слайда:

4). -12<x-1<1 4). -12<x-1<1 x-1<1 x<2 Ответ: (-11;2). x-1>-12; x>-11. Задания: Сборник 1).стр. 109 № 126-127, 134, стр. 172 №783-790 Сборник 2). Стр. 111 №3.9

№ слайда 29 5).| 3х-2|<10 5).| 3х-2|<10 3x-2>-10 x> 3x-2<10; x<4. Ответ: (
Описание слайда:

5).| 3х-2|<10 5).| 3х-2|<10 3x-2>-10 x> 3x-2<10; x<4. Ответ: ( ;4).

№ слайда 30 1).Кузнецова Л.В. 1).Кузнецова Л.В. «Сборник заданий для проведения письменного
Описание слайда:

1).Кузнецова Л.В. 1).Кузнецова Л.В. «Сборник заданий для проведения письменного экзамена по алгебре» «Дрофа», 2007 год 2). Кузнецова Л.В. «Сборник заданий для подготовки к итоговой аттестации в 9 классе» «Просвещение», 2010 год 3).Лысенко Ф.Ф. «Алгебра 9 класс тематические тесты для подготовки к ГИА 2010» «Легион –М» 2009 год 4). Лысенко Ф.Ф. «Подготовка к итоговой аттестации 2010» 2009 год

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru