Прототип заданий В12 Проверяемые требования (умения) Уметь строить и исследовать простейшие математические модели
Умения по КТМоделировать реальные ситуации на языке алгебры, составлять уравнения и неравенства по условию задачи; исследовать построенные модели с использованием аппарата алгебры
Содержание задания В12 по КЭСУравнения и неравенства. 2.1.8 Простейшие системы уравнений с двумя неизвестными 2.1.9 Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных 2.1.10 Использование свойств и графиков функций при решении уравнений 2.1.11 Изображение на координатной плоскости множества решений уравнений с двумя переменными и их систем 2.1.12 Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений 2.2.6 Системы неравенств с одной переменной 2.2.7 Равносильность неравенств, систем неравенств 2.2.8 Использование свойств и графиков функций при решении неравенств 2.2.9 Метод интервалов 2.2.10 Изображение на координатной плоскости множества решений неравенств с двумя переменными и их систем
Памятка ученикуЗадание B12 - текстовая задача на движение или работу. Чтобы выполнить это задание, ученик должен составить и решить уравнение по условию, правильно интерпретировать полученный результат.
Прототип задания B12Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути — со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста. Ответ дайте в км/ч. Примем путь за единицу, обозначим за х км/ч– скорость первого автомобилиста. Тогда скорость второго – (х+16) км/ч. Составим уравнение:1/х=0,5/24+0,5/(х+16)Корнями квадратного уравнениях2-8х-768=0 являются числа-24 и 32.Корень -24 не удовлетворяет условию задачиОтвет: 32 км/ч.
Задания для самостоятельного решения1) Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 42 км/ч, а вторую половину пути — со скоростью, на 28 км/ч большей скорости первого, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста. Ответ дайте в км/ч. 2) Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 27 км/ч, а вторую половину пути — со скоростью, на 18 км/ч большей скорости первого, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста. Ответ дайте в км/ч.
Прототип задания B12Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 70 км. На следующий день он отправился обратно в А со скоростью на 3 км/ч больше прежней. По дороге он сделал остановку на 3 часа. В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. Ответ дайте в км/ч. Примем за х км/ч – скорость велосипедиста из А в В., тогда его скорость на обратном пути составляет (х+3) км/ч Составим уравнение:70/х=70/(х+3)+3Корнями квадратного уравнени:х∙х+3х+70=0 являются числа:-10 и 7. 7+3=10Ответ: 10 км/ч.
Задания для самостоятельного решения1) Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 154 км. На следующий день он отправился обратно в А со скоростью на 3 км/ч больше прежней. По дороге он сделал остановку на 3 часа. В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. Ответ дайте в км/ч. 2) Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 77 км. На следующий день он отправился обратно в А со скоростью на 4 км/ч больше прежней. По дороге он сделал остановку на 4 часа. В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. Ответ дайте в км/ч.
Прототип задания B12Решите задачу Моторная лодка в 10:00 вышла из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 2 часа 30 минут, лодка отправилась назад и вернулась в пункт А в 18:00. Определите (в км/час) собственную скорость лодки, если известно, что скорость течения реки 1 км/ч. Обозначим за х км/ч– собственную скорость лодки. (х-1) км/ч – скорость против течения; (х=1) км/ч – скорость по течению. Составим уравнение:30/(х+1)+30/(х-1)+2.5=8Его корни:-1/11 и 11.Ответ: 11 км/ч.
Задания для самостоятельного решения1) Байдарка в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 20 минут, байдарка отправилась назад и вернулась в пункт А в 16:00. Определите (в км/час) собственную скорость байдарки, если известно, что скорость течения реки 2 км/ч. 2) Лодка в 9:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 2 часа, лодка отправилась назад и вернулась в пункт А в 19:00. Определите (в км/час) собственную скорость лодки, если известно, что скорость течения реки 1 км/ч.
Прототип задания B12Решите задачу Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 110 литров она заполняет на 1 минуту дольше, чем вторая труба? Обозначим за х л/мин – производительность первой трубы, у л/мин- производительность второй трубы.Составим систему:
Задания для самостоятельного решения1)Первая труба пропускает на 4 литра воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 192 литра она заполняет на 4 минуты дольше, чем вторая труба?2)Первая труба пропускает на 4 литра воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 165 литров она заполняет на 4 минуты дольше, чем вторая труба? Ответ: 1) 12 литров 2)11 литров
Прототип задания B12Решите задачу Заказ на 110 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше? Обозначим за х – производительность 1 рабочего, за у – производительность второго рабочего. Составим систему:
Задания для самостоятельного решения1)Заказ на 180 деталей первый рабочий выполняет на 3 часа быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 3 детали больше? 2)Заказ на 182 детали первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше?Ответ:1)12 деталей 2)13 деталей