Неравенства и их решения
Неравенство Неравенство Решить неравенство. Совокупность неравенств
Неравенства Неравенства
Пример: Решить неравенство Пример: Решить неравенство √24 – 10x + x² < x – 4 x-4> 0, (24-10x+x²)(24-10x + x²-(x-4²))<0 x-4> 0 (x-4) (x-6)(x-4)(-2)<0 x-4 >0, (x-4)²(x-6)>0 x=4 x>6 Ответ:{4} ; [ 6 ; +∞ )
Методом интервалов: Методом интервалов: 1. Все члены неравенства переносятся в левую часть и приводятся к общему знаменателю. 2. Определить критические точки. 3. Критические точки наносятся на числовую прямую, прямая разбивается при этом на интервалы. 4. Определить знаки на интервалах. 5. . Множество решений неравенств объединяется интервалом с соответствующим знаком, при этом случае , если неравенство нестрогое ,то к этому множеству прибавляется корни числителя.
Линейные неравенства Линейные неравенства – неравенства вида ax>b, ax< b, ax≥ b,ax ≤b , где a и b действительные числа или выражения , зависящие от параметров (ax – неизвестное)
Например, (3 - √10 )(2х- 7)< 0 Например, (3 - √10 )(2х- 7)< 0 6x- 21- 2x√10 + 7√10<0 36x² + 441+40x² + 490< 0 76x² + 931< 0 x² < 12.25 x1= 3.5 x2= -3.5
(5 - a)x > a + 3 (5 - a)x > a + 3 a > 5, тогда х< a +3 5-a 2. а < 5, тогда x > a+3 5-a 3. a =5 , x єØ
Квадратные неравенства – это неравенства вида ax² + b x +c > 0, где a, b, c – действительные числа
Если а>0 и D<0 , Если а>0 и D<0 , то х єØ Если a> 0 и D=0 , то x є( - ∞ ; -b/2a) (-b/2a ; + ∞ ) Если а > 0 и D > 0, то х є(- ∞ ; х 1) (х 2; + ∞ ), где х1, х2- корни квадратного трехчлена. Если a< 0 D<0, то х є Ø Если a<0 и D=0, то х є Ø Если a<0 и D >0 , то х є (х 1;х 2), х 1, х 2 - корни квадратного трехчлена.