Решение задач тема:"Комбинаторика"
Сколькими способами можно распределить уроки в шести классах между тремя учителями, если каждый учитель будет преподавать в двух классах?
Решение Первый учитель может выбрать два класса из шести различными способами. После выбора первого учителя второй может выбрать два класса из четырех оставшихся различными способами. Тогда два учителя могут выбрать по два класса различными способами. Если они уже сделали выбор, то третий может взять только оставшиеся два класса. Поэтому искомое числоОтвет: 90 способов.
Сколькими различными способами можно выбрать из 15 человек делегацию в составе трех человек?
Решение Различными будем считать те делегации, которые отличаются хотя бы одним членом. Таким образом, нужно вычислитьОтвет:455 способов
На родительском собрании присутствует 20 человек. Сколько существует различных вариантов состава родительского комитета, если в него должны войти 5 человек?
Решение В этом примере нас не интересует порядок фамилий в списке комитета. Если в результате в его составе окажутся одни и те же люди, то по смыслу для нас это один и тот же вариант. Поэтому мы можем воспользоваться формулой для подсчета числа сочетаний из 20 элементов по 5.Ответ: 15504 варианта
Встретились 6 друзей, и каждый пожал руку каждому. Сколько всего было рукопожатий?
Решение Каждый пожал руку каждому, то есть каждый человек сделал 5 рукопожатий. Но общее количество рукопожатий, получается по правилу суммы: n1 + n2 + ... + n6 = 6 × 5 = 30. Учтём теперь то, что каждое рукопожатие мы посчитали дважды, и получим в результате 15 рукопожатий
У одного человека 7 книг по математике, а у второго – 9. Сколькими способами они могут обменять друг у друга две книги на две книги.
Решение Так как надо порядок следования книг не имеет значения, то выбор 2 книг - сочетание. Первый человек может выбрать 2 книги способами. Второй человек может выбрать 2 книги. Значит всего по правилу произведения возможно 21*36=756 вариантов