Доказательства Теоремы Пифагора
Доказательства Пусть ABC — данный прямоугольный с треугольник с прямым углом С. Проведем высоту CD из вершины прямого угла С (рис. 6). По определению косинуса угла (косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе) cosA=AD/AC=AC/AB. Отсюда ABxAD=AC* AC. Аналогично cosB=BD/BC=BC/AB. Отсюда ABxBD=BC*BC. Складывая полученные равенства почленно, и замечая, что AD+DB=AB, получим: AC*AC+BC*BC=AB(AD + DB)=AB*AB. Теорема доказана.