PPt4Web Хостинг презентаций

Главная / Геометрия / Правильные многогранники.
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Правильные многогранники.


Скачать эту презентацию

Презентация на тему: Правильные многогранники.


Скачать эту презентацию



№ слайда 1
Описание слайда:

№ слайда 2 Цель пректа Цель пректа Термин Многогранники История Платон Платоновы тела Евкли
Описание слайда:

Цель пректа Цель пректа Термин Многогранники История Платон Платоновы тела Евклид Архимед Архимедовы тела Иоганн Кеплер Космологическая гипотеза Кеплера

№ слайда 3 Рассказать о правильных многогранниках, о их происхождении, их нахождении в прир
Описание слайда:

Рассказать о правильных многогранниках, о их происхождении, их нахождении в природе, архитектуре и живописи. Рассказать о правильных многогранниках, о их происхождении, их нахождении в природе, архитектуре и живописи.

№ слайда 4
Описание слайда:

№ слайда 5 Их изучали ученые, ювелиры, священники, архитекторы. Этим многогранникам даже пр
Описание слайда:

Их изучали ученые, ювелиры, священники, архитекторы. Этим многогранникам даже приписывали магические свойства. Древнегреческий ученый и философ Платон (IV–V в до н. э.) считал, что эти тела олицетворяют сущность природы. В своем диалоге «Тимей» Платон говорит, что атом огня имеет вид тетраэдра, земли – гексаэдра (куба), воздуха – октаэдра, воды – икосаэдра. В этом соответствии не нашлось места только додекаэдру и Платон предположил существование еще одной, пятой сущности – эфира, атомы которого как раз и имеют форму додекаэдра. Ученики Платона продолжили его дело в изучении перечисленных тел. Поэтому эти многогранники называют платоновыми телами. Их изучали ученые, ювелиры, священники, архитекторы. Этим многогранникам даже приписывали магические свойства. Древнегреческий ученый и философ Платон (IV–V в до н. э.) считал, что эти тела олицетворяют сущность природы. В своем диалоге «Тимей» Платон говорит, что атом огня имеет вид тетраэдра, земли – гексаэдра (куба), воздуха – октаэдра, воды – икосаэдра. В этом соответствии не нашлось места только додекаэдру и Платон предположил существование еще одной, пятой сущности – эфира, атомы которого как раз и имеют форму додекаэдра. Ученики Платона продолжили его дело в изучении перечисленных тел. Поэтому эти многогранники называют платоновыми телами.

№ слайда 6
Описание слайда:

№ слайда 7
Описание слайда:

№ слайда 8
Описание слайда:

№ слайда 9
Описание слайда:

№ слайда 10
Описание слайда:

№ слайда 11
Описание слайда:

№ слайда 12
Описание слайда:

№ слайда 13 «эдра» - грань «эдра» - грань «тетра» - 4 «гекса» - 6 «окта» - 8 «икоса» - 20 «д
Описание слайда:

«эдра» - грань «эдра» - грань «тетра» - 4 «гекса» - 6 «окта» - 8 «икоса» - 20 «дедека» - 12

№ слайда 14 Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четыр
Описание слайда:

Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра У него 4 вершины,4 грани,6 ребер Сумма плоских углов при каждой вершине равна 180 градусов

№ слайда 15
Описание слайда:

№ слайда 16 (состоит из 20 треугольников) В каждой вершине икосаэдра сходятся пять граней. С
Описание слайда:

(состоит из 20 треугольников) В каждой вершине икосаэдра сходятся пять граней. Существует правильный многогранник, у которого все грани – правильные треугольники, и из каждой вершины выходит 5 ребер. Этот многогранник имеет 20 граней, 30 ребер, 12 вершин и называется икосаэдром (icosi – двадцать). Сумма плоских углов при каждой вершине равна 300 градусов

№ слайда 17
Описание слайда:

№ слайда 18 Существует правильный многогранник, у которого все грани правильные пятиугольник
Описание слайда:

Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать). Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать). Сумма плоских углов при каждой вершине равна 324 градуса

№ слайда 19
Описание слайда:

№ слайда 20 Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани кото
Описание слайда:

Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра. Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра. У него 6 граней,8 вершин,12 ребер Сумма плоских углов при каждой вершине равна 270 градусов

№ слайда 21
Описание слайда:

№ слайда 22 Октаэдр. Это правильный многогранник, все грани которого – правильные треугольни
Описание слайда:

Октаэдр. Это правильный многогранник, все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани Октаэдр. Это правильный многогранник, все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани У него 8 граней,12 ребер,6вершин

№ слайда 23
Описание слайда:

№ слайда 24
Описание слайда:

№ слайда 25
Описание слайда:

№ слайда 26
Описание слайда:

№ слайда 27
Описание слайда:

№ слайда 28
Описание слайда:

№ слайда 29 Курносый куб. Этот многогранник можно вписать в куб таким образом, что плоскости
Описание слайда:

Курносый куб. Этот многогранник можно вписать в куб таким образом, что плоскости шести квадратных его граней совпадут с плоскостями граней куба, причем эти квадратные грани курносого куба окажутся как бы слегка повернутыми по отношению к соответственным граням куба. Курносый куб. Этот многогранник можно вписать в куб таким образом, что плоскости шести квадратных его граней совпадут с плоскостями граней куба, причем эти квадратные грани курносого куба окажутся как бы слегка повернутыми по отношению к соответственным граням куба. Ромбоикосододекаэдр. Эта модель принадлежит к числу наиболее привлекательных среди всех других моделей архимедовых тел. Гранями являются треугольники, квадраты и пятиугольники. Ромбоусеченный кубооктаэдр. Этот многогранник, известный также под названием усеченного кубооктаэдра, гранями имеет квадраты, шестиугольники и восьмиугольники. Курносый додекаэдр – это последний из семейства выпуклых однородных многогранников. Гранями являются треугольники и пятиугольники.

№ слайда 30 Он образован помощью семи кубов, образующих пространственный "крест« и доде
Описание слайда:

Он образован помощью семи кубов, образующих пространственный "крест« и додекаэдра. Он образован помощью семи кубов, образующих пространственный "крест« и додекаэдра.

№ слайда 31
Описание слайда:

№ слайда 32
Описание слайда:

№ слайда 33 В кристаллических телах частицы располагаются в строгом порядке, образуя простра
Описание слайда:

В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Для наглядного представления таких структур используются пространственные кристаллические решетки, в узлах которых располагаются центры атомов или молекул данного вещества. Чаще всего кристаллическая решетка строится из ионов (положительно и отрицательно заряженных) атомов, которые входят в состав молекулы данного вещества. Например, решетка поваренной соли содержит ионы Na+ и Cl–, не объединенные попарно в молекулы NaCl . Такие кристаллы называются ионными. В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Для наглядного представления таких структур используются пространственные кристаллические решетки, в узлах которых располагаются центры атомов или молекул данного вещества. Чаще всего кристаллическая решетка строится из ионов (положительно и отрицательно заряженных) атомов, которые входят в состав молекулы данного вещества. Например, решетка поваренной соли содержит ионы Na+ и Cl–, не объединенные попарно в молекулы NaCl . Такие кристаллы называются ионными.

№ слайда 34 Кристаллические решетки металлов часто имеют форму шестигранной призмы (цинк, ма
Описание слайда:

Кристаллические решетки металлов часто имеют форму шестигранной призмы (цинк, магний), гранецентрированного куба (медь, золото) или объемно центрированного куба (железо). Кристаллические решетки металлов часто имеют форму шестигранной призмы (цинк, магний), гранецентрированного куба (медь, золото) или объемно центрированного куба (железо). Кристаллические тела могут быть монокристаллами и поликристаллами. Поликристаллические тела состоят из многих сросшихся между собой хаотически ориентированных маленьких кристалликов, которые называются кристаллитами. Большие монокристаллы редко встречаются в природе и технике. Чаще всего кристаллические твердые тела, в том числе и те, которые получаются искусственно, являются поликристаллами.

№ слайда 35 Кальций. При ударах кристаллы кальцита раскалываются правильные фигурки, каждая
Описание слайда:

Кальций. При ударах кристаллы кальцита раскалываются правильные фигурки, каждая грань которых имеет форму параллелограмма . Кальций образует разнообразные кристаллы от пластичной до вытянуто- призматичной формы. Кальций. При ударах кристаллы кальцита раскалываются правильные фигурки, каждая грань которых имеет форму параллелограмма . Кальций образует разнообразные кристаллы от пластичной до вытянуто- призматичной формы. Апатит. Они образуют кристаллы в форме прямоугольной призмы. Бериллий. Обычно встречается в виде столбчатых шестигранных кристаллов.

№ слайда 36
Описание слайда:

№ слайда 37
Описание слайда:

№ слайда 38
Описание слайда:

№ слайда 39 В эпоху Возрождения большой интерес к формам правильных многогранников проявляли
Описание слайда:

В эпоху Возрождения большой интерес к формам правильных многогранников проявляли скульпторы, архитекторы, ХУДОЖНИКИ. Леонардо да Винчи увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал изображениями правильных и полуправильных многогранников книгу своего друга, монаха Луки Пачоли «О божественной пропорции» В эпоху Возрождения большой интерес к формам правильных многогранников проявляли скульпторы, архитекторы, ХУДОЖНИКИ. Леонардо да Винчи увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал изображениями правильных и полуправильных многогранников книгу своего друга, монаха Луки Пачоли «О божественной пропорции»

№ слайда 40 На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками
Описание слайда:

На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра. На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра. Форму додекаэдра, по мнению древних, имела  ВСЕЛЕННАЯ , т.е. они считали, что мы живём внутри свода, имеющего форму поверхности  правильного додекаэдра.

№ слайда 41 Альбрехт Дюрер. Альбрехт Дюрер. В его известной гравюре «Меланхолия» на переднем
Описание слайда:

Альбрехт Дюрер. Альбрехт Дюрер. В его известной гравюре «Меланхолия» на переднем плане изображен додекаэдр. А в 1525 году Дюрер написал трактат, в котором рассмотрел пять правильных многогранников, поверхности которых служат хорошими моделями перспективы.

№ слайда 42
Описание слайда:

№ слайда 43 Среди египетских пирамид особое место занимает пирамида фараона Хеопса. Длина ст
Описание слайда:

Среди египетских пирамид особое место занимает пирамида фараона Хеопса. Длина стороны её основания L =233,16 м; высота Н =146,6; 148,2 м. Первоначально высота оценивалась не точно. Это связано с осадкой швов, деформацией блоков, предполагаемой частичной разборкой вершины от S 6∙6 до 10∙10 м. Среди египетских пирамид особое место занимает пирамида фараона Хеопса. Длина стороны её основания L =233,16 м; высота Н =146,6; 148,2 м. Первоначально высота оценивалась не точно. Это связано с осадкой швов, деформацией блоков, предполагаемой частичной разборкой вершины от S 6∙6 до 10∙10 м.

№ слайда 44 Среди египетских пирамид особое место занимает пирамида фараона Хеопса. Длина ст
Описание слайда:

Среди египетских пирамид особое место занимает пирамида фараона Хеопса. Длина стороны её основания L =233,16 м; высота Н =146,6; 148,2 м. Первоначально высота оценивалась не точно. Это связано с осадкой швов, деформацией блоков, предполагаемой частичной разборкой вершины от S 6∙6 до 10∙10 м. Среди египетских пирамид особое место занимает пирамида фараона Хеопса. Длина стороны её основания L =233,16 м; высота Н =146,6; 148,2 м. Первоначально высота оценивалась не точно. Это связано с осадкой швов, деформацией блоков, предполагаемой частичной разборкой вершины от S 6∙6 до 10∙10 м. Угол наклона граней =51◦51 . Впервые он был измерен английским полковником Г. Вайзовым в 1837 г tg 51◦ 51 =1,27306= vd= 1,27202.

№ слайда 45
Описание слайда:

№ слайда 46
Описание слайда:

№ слайда 47
Описание слайда:

№ слайда 48
Описание слайда:

№ слайда 49
Описание слайда:

№ слайда 50 Икосаэдр оказался в центре внимания биологов в их спорах относительно формы виру
Описание слайда:

Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр.

№ слайда 51
Описание слайда:

№ слайда 52 Вы узнали о многогранниках все что мы смогли вам показать=) Вы узнали о многогра
Описание слайда:

Вы узнали о многогранниках все что мы смогли вам показать=) Вы узнали о многогранниках все что мы смогли вам показать=)

№ слайда 53
Описание слайда:

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru