PPt4Web Хостинг презентаций

Главная / Алгебра / Метод математической индукции
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Метод математической индукции


Скачать эту презентацию

Презентация на тему: Метод математической индукции


Скачать эту презентацию

№ слайда 1 Метод математической индукции Подготовила ученица 10 «А» класса Терещенко Мария.
Описание слайда:

Метод математической индукции Подготовила ученица 10 «А» класса Терещенко Мария. 900igr.net

№ слайда 2 Содержание: 1.Введение. 2.Основная часть и примеры. 3.Заключение.
Описание слайда:

Содержание: 1.Введение. 2.Основная часть и примеры. 3.Заключение.

№ слайда 3 Введение В основе всякого математического исследования лежат дедуктивный и индук
Описание слайда:

Введение В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

№ слайда 4 Основная часть По своему первоначальному смыслу слово “индукция” применяется к р
Описание слайда:

Основная часть По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

№ слайда 5 Пусть требуется установить, что каждое натуральное чётное число n в пределах 4<
Описание слайда:

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4< n < 20 представим в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения: 4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5; 14=7+7; 16=11+5; 18=13+5; 20=13+7.

№ слайда 6 Эти девять равенств показывают, что каждое из интересующих нас чисел действитель
Описание слайда:

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых. Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев. Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

№ слайда 7 Полная индукция имеет в математике лишь ограниченное применение. Многие интересн
Описание слайда:

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам. Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции.

№ слайда 8 Принцип математической индукции. Если предложение А(n), зависящее от натуральног
Описание слайда:

Принцип математической индукции. Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.

№ слайда 9 Если предложение А(n) истинно при n=p и если А(k) >А(k+1) для любого k>p, то пре
Описание слайда:

Если предложение А(n) истинно при n=p и если А(k) >А(k+1) для любого k>p, то предложение А(n) истинно для любого n>p. Док-во по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть док-ва, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k ,т.е. доказывают, что А(k) >A(k+1).

№ слайда 10 Метод математической индукции в решении задач на делимость. Пример 1 Доказать, ч
Описание слайда:

Метод математической индукции в решении задач на делимость. Пример 1 Доказать, что при любом n , 7 n-1 делится на 6 без остатка. Решение: 1)Пусть n=1, тогда Х1 =71-1=6 делится на 6 без остатка. Значит при n=1 утверждение верно. 2) Предположим, что при n=k ,7k-1 делится на 6 без остатка.

№ слайда 11 3) Докажем, что утверждение справедливо для n=k+1. X k+1 =7 k+1 -1=7 7 k -7+6=7(
Описание слайда:

3) Докажем, что утверждение справедливо для n=k+1. X k+1 =7 k+1 -1=7 7 k -7+6=7(7 k -1)+6. Первое слагаемое делится на 6, поскольку 7 k-1 делится на 6 по предположению, а вторым слагаемым является 6. Значит 7 n-1 кратно 6 при любом натуральном n. В силу метода математической индукции утверждение доказано.

№ слайда 12 Применение метода к суммированию рядов. Пример 2 Доказать, что 1+х+х 2 +х 3 +…+х
Описание слайда:

Применение метода к суммированию рядов. Пример 2 Доказать, что 1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х (1) Решение: 1) При n=1 получаем 1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1 следовательно, при n=1 формула верна; А(1) истинно.

№ слайда 13 2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е. 1+х+х 2 +
Описание слайда:

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е. 1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1). Докажем, что тогда выполняется равенство 1+х+х 2+х 3+…+х k +x k+1 =(x k+2 -1)/(х-1). В самом деле 1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k )+x k+1 = (x k+1 -1)/(x-1)+x k+1 = =(x k+2 -1)/(x-1). Итак, А(k) > A(k+1). На основании принципа математической индукции заключаем, что формула верна для любого натурального числа n.

№ слайда 14 Применения метода к доказательству неравенств. Пример 3 Доказать, что при n>2 сп
Описание слайда:

Применения метода к доказательству неравенств. Пример 3 Доказать, что при n>2 справедливо неравенство 1+(1/2 2 )+(1/3 2 )+…+(1/n 2 )

№ слайда 15 3) Докажем справедливость неравенства при n=k+1 (1+(1/2 2 )+…+(1/k 2 ))+(1/(k+1)
Описание слайда:

3) Докажем справедливость неравенства при n=k+1 (1+(1/2 2 )+…+(1/k 2 ))+(1/(k+1) 2 )<

№ слайда 16 Метод в применение к другим задачам. Пример 4 Доказать, что число диагоналей вып
Описание слайда:

Метод в применение к другим задачам. Пример 4 Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2. Решение: 1) При n=3 утверждение справедливо, ибо в треугольнике А 3 =3(3-3)/2=0 диагоналей; А 2 А(3) истинно. 2) Предположим, что во всяком выпуклом k-угольнике имеет ся А k =k(k-3)/2 диагоналей.

№ слайда 17 3)Докажем, что тогда в выпуклом А k+1 (k+1)-угольнике число диагоналей А k+1 =(k
Описание слайда:

3)Докажем, что тогда в выпуклом А k+1 (k+1)-угольнике число диагоналей А k+1 =(k+1)(k-2)/2. Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-угольник. Проведём в нём диагональ A 1 A k . Чтобы подсчитать общее число диагоналей этого (k+1)-угольника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k. Таким образом, k+1=k+(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2. Итак, А(k) > A(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

№ слайда 18 Заключение В частности изучив метод математической индукции, я повысила свои зна
Описание слайда:

Заключение В частности изучив метод математической индукции, я повысила свои знания в этой области математики, а также научилась решать задачи, которые раньше были мне не под силу. В основном это были логические и занимательные задачи, т.е. как раз те, которые повышают интерес к самой математике как к науке. Решение таких задач становится занимательным занятием и может привлечь в математические лабиринты всё новых любознательных. По-моему, это является основой любой науки.

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru