Байдаровой Алуа 11 «В» Функция. Свойства функции.
Cодержание
Числовой функцией называется соответствие (зависимость), при котором каждому значению одной переменной сопоставляется по некоторому правилу единственное значение другой переменной. Числовой функцией называется соответствие (зависимость), при котором каждому значению одной переменной сопоставляется по некоторому правилу единственное значение другой переменной. Обозначают латинскими (иногда греческими) буквами : f, q, h, y, p и т.д. Задание 1. Определите, какая из данных зависимостей является функциональной 1) x y 2) a q 3) x d 4) n f
1. Функция , т.к. каждому значению переменной х ставится в соответствие единственное значение переменной у 1. Функция , т.к. каждому значению переменной х ставится в соответствие единственное значение переменной у 2. Не функция, т.к. не каждому значению переменной а ставится в соответствие единственное значение переменной q 3. Не функция, т.к. одному из значений переменной х ставится в соответствие не единственное значение переменной d 4. Функция , т.к. каждому значению переменной n ставится в соответствие единственное значение переменной f 1) x y 2) a q 3) x d 4) n f
Способы задания функций - Аналитический (с помощью формулы) - Графический - Табличный - Описательный (словесное описание) Сила равна скорости изменения импульса
График функции Графиком функции f называют множество всех точек (х; у) координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты равны соответствующим значениям функции. Задание 2. Определите, какой из данных графиков является графиком функции Рис.1 Рис.2 Рис.3 Рис.4
1. Область определения 1. Область определения 2. Область значений 3. Нули функции 4. Четность 5. Промежутки знакопостоянства 6. Непрерывность 7. Монотонность 8. Наибольшее и наименьшее значения 9. Ограниченность 10. Выпуклость
1.Область определения
2. Область значений
Нулем функции y = f (x) называется такое значение аргумента x0, при котором функция обращается в нуль: f (x0) = 0. Нули функции - абсциссы точек пересечения с Ох
5. Промежутки знакопостоянства Промежутки, на которых непрерывная функция сохраняет свой знак и не обращается в нуль, называются промежутками знакопостоянства.
6. Непрерывность Функция называется непрерывной на промежутке, если она определена на этом промежутке и непрерывна в каждой точке этого промежутка. Непрерывность функции на промежутке Х означает, что график функции на всей области определения сплошной, т.е. не имеет проколов и скачков. Задание . Определите, на каком из рисунков изображен график непрерывной функции .
7. Монотонность Функцию у = f(х) называют возрастающей на множестве Х, если для любых двух точек х1 и х2 из области определения, таких, что х1 < х2, выполняется неравенство f(х1) < f(х2) .
8.Наибольшее и наименьшее значения Число m называют наименьшим значением функции у = f(х) на множестве Х, если: 1) в области определения существует такая точка х0, что f(х0) = m. 2) всех х из области определения выполняется неравенство f(х) ≥ f(х0). Число M называют наибольшим значением функции у = f(х) на множестве Х, если: 1) в области определения существует такая точка х0, что f(х0) = M. 2) для всех х из области определения выполняется неравенство f(х) ≤ f(х0).
9. Ограниченность Функцию у = f(х) называют ограниченной снизу на множестве Х, если все значения функции на множестве Х больше некоторого числа.
10. Выпуклость Функция выпукла вниз на промежутке Х если, соединив любые две точки ее графика отрезком прямой, мы обнаружим, что соответствующая часть графика лежит ниже проведенного отрезка. Функция выпукла вверх на промежутке Х, если соединив любые две точки ее графика отрезком прямой, мы обнаружим, что соответствующая часть графика лежит выше проведенного отрезка .