PPt4Web Хостинг презентаций

Главная / Математика / Обратные тригонометрические функции (11 класс)
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Обратные тригонометрические функции (11 класс)


Скачать эту презентацию

Презентация на тему: Обратные тригонометрические функции (11 класс)


Скачать эту презентацию



№ слайда 1 Презентация на тему: Обратные тригонометрические функции Подготовила: ученица 11
Описание слайда:

Презентация на тему: Обратные тригонометрические функции Подготовила: ученица 11 класса «Д»Шунайлова МаринаРуководители: Крагель Т.П., Гремяченская Т.В.

№ слайда 2 Что же такое функция? Зависимая переменнаяСоответствие y = f (x) между переменны
Описание слайда:

Что же такое функция? Зависимая переменнаяСоответствие y = f (x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины х сответсвует определенное значение другой величины у.Такое соответствие может быть задано различном образом , например : формулой, графически или таблицей.С помощью функции математически выражаются многообразные количественные закономерности в природе.

№ слайда 3 Рассмотрим следующие обратные функции: X = arcsin yX = arccos yX = arctg yX = ar
Описание слайда:

Рассмотрим следующие обратные функции: X = arcsin yX = arccos yX = arctg yX = arcctg y

№ слайда 4 Обратная функция - функция, обращающая зависимость, выражаемую данной функцией.
Описание слайда:

Обратная функция - функция, обращающая зависимость, выражаемую данной функцией. Так, если y =f ( x) — данная функция, то переменная х, рассматриваемая как функция переменной у: х = j( y), является обратной по отношению к данной функции у = f ( x). Напр., х = есть обратная функция по отношению к y = x3.

№ слайда 5 Функция y = sin x, рассматриваемая на промежутке [ -П/2 ; П/2] , имеет обратную
Описание слайда:

Функция y = sin x, рассматриваемая на промежутке [ -П/2 ; П/2] , имеет обратную функцию, которую называют арксинусом и записывают ч x = arcsin y , Свойства этой функции 1) Область определения – промежуток [ -1 ; 1] 2) Множество значений – промежуток [ -П/2 ; П/2] 3) Эта функция нечетная 4) Нули функции: при х = 0 5). Промежутки знакопостоянства arcsin x< 0 при х ℮ [-1; 0)6) Функция непрерывна и дифференцируема в каждой точке

№ слайда 6 arccos x Функция у = cos x, рассматриваемая на промежутке [0;П], имеет обратную
Описание слайда:

arccos x Функция у = cos x, рассматриваемая на промежутке [0;П], имеет обратную функцию, которую называют арккосинусом и записывают x = arccos y Свойства этой функции 1) Область определения – промежуток [ -1 ; 1] 2) Множество значений – промежуток [ 0 ; П] 3) Эта функция не является ни четной ни нечетной 4) Нули функции: при х = 1 5) Промежутки знакопостоянства arccos > 0, при х ℮ [-1;1) 6) Функция непрерывна и дифференцируема в каждой точке

№ слайда 7 Функция y = tg x, рассматриваемая на промежутке (-П/2;П/2), имеет обратную функц
Описание слайда:

Функция y = tg x, рассматриваемая на промежутке (-П/2;П/2), имеет обратную функцию, которую называют арктангенсом записывают x = arctg yСвойства этой функции 1) Область определения – вся числовая прямая 2) Множество значений – промежуток (-П/2;П/2) 3) Эта функция является нечетной 4) Нули функции: при х = 0 5) Промежутки знакопостоянства arctg > 0 при х ℮ (0;+∞) arctg < 0 при х ℮ (-∞;0) 6) Функция непрерывна и дифференцируема при всех х ℮ R

№ слайда 8 arcctg x Функция Y = ctg x, рассматриваемая на промежутке (0;П), имеет обратную
Описание слайда:

arcctg x Функция Y = ctg x, рассматриваемая на промежутке (0;П), имеет обратную функцию, которую называют арктангенсом и записывают x = arcctg y Свойства этой функции 1) Область определения – вся числовая прямая 2) Множество значений – промежуток (0;П) 3) Эта функция не является ни четной ни нечетной 4) Функция положительна при всех х ℮ R 5) Функция непрерывна и дифференцируема при всех х ℮ R

№ слайда 9 arcsin x
Описание слайда:

arcsin x

№ слайда 10 arccos x
Описание слайда:

arccos x

№ слайда 11 arctg x
Описание слайда:

arctg x

№ слайда 12 arcctg x
Описание слайда:

arcctg x

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru