МОУ Гимназия имени академика Н.Г. Басова при Воронежском госуниверситетеБелоусова Алла Генриховна, учитель математики, кандидат педагогических наук
История развития понятия функции Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.
Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами. В первых формулах для нахождения площади и объема тех или иных фигур. Так, вавилонские ученые (4-5тыс.лет назад) пусть несознательно, но установили, что площадь круга является функцией от его радиуса посредством нахождения грубо приближенной формулы:
Понятие переменной величины Греки рассматривали лишь вопросы, имеющие “геометрическую” природу, и не ставили вопроса об общем изучении различных зависимостей. Графическое изображение зависимостей широко использовали Г. Галилей (1564–1642), П. Ферма (1601–1665) и Р. Декарт (1569–1650), который ввел понятие «переменной величины».
Развитие механики и техники Развитие механики и техники потребовало введения общего понятия функции, что было сделано немецким философом и математиком Г. Лейбницем (1646 – 1716).
Само слово “функция” (от латинского functio - совершение, выполнение) впервые было употреблено Лейбницем в 1673г. в письме к Гюйгенсу (под функцией он понимал отрезок, длина которого меняется по какому-нибудь определенному закону).В печати он ввел этот термин с 1694 года. Начиная с 1698 года, Лейбниц ввел также термины “переменная” и “константа”.
В 18 веке появляется новый взгляд на функцию как на формулу, связывающую одну переменную с другой. Это так называемая аналитическая точка зрения на понятие функции. Подход к такому определению впервые сделал швейцарский математик Иоганн Бернулли (1667-1748), который в 1718 году определил функцию следующим образом: “Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных”.
Развитие понятия функции Следующий шаг в развитии понятия функции сделал гениальный ученик Бернулли, член Петербургской Академии наук Леонард Эйлер (1707 – 1783). Он писал: “Величины, зависящие от других так, что с изменениями вторых изменяются и первые, принято называть их функциями”.
В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 году, 28-летний советский математик и механик С. Л. Соболев первым рассмотрел частный случай обобщенной функции.
Функцией называется соответствие между двумя множествами, при котором каждому элементу одного множества соответствует единственный элемент другого множества.
Функции рядом с нами
Функции рядом с нами Любоваться природой можно и не зная математики. Но понять ее, увидеть то, что скрыто за внешними образами явлений можно лишь с помощью точной науки. Только она позволяет заметить, что в явлениях природы есть формы и ритмы, недоступные глазу созерцателя, но открытые глазу аналитика.
Функции рядом с нами Знание законов природы дало человеку возможность объяснять и предсказывать ее разнообразнейшие явления. «Математическими портретами» закономерностей природы и служит функция.
Функции рядом с нами График делает информацию о функции зримой и наглядной. Выразительная «картинка» вмиг расскажет о характерных особенностях и поведении функции.
Функции рядом с нами «…Но кривая линия – геометрический эквивалент функции – гораздо больше говорит воображению, чем формула, и гораздо более обозрима, чем таблица числовых значений» В.И. Гончаров
Функции рядом с нами Графиком функции называют множество точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции.
Функции рядом с нами Чтобы наглядно проиллюстрировать характерные свойства функции, обратимся к пословицам. Ведь пословицы – это тоже отражение устойчивых закономерностей, выверенных многовековым опытом народа.
С помощью схематичных графиков функции проиллюстрируйте смысл пословиц: Каково жизнь проживёшь - такую славу наживёшь.Какой мерой меряешь, такой и тебе отмерится. Каши маслом не испортишь.Чем дальше в лес, тем больше дров.Дальше от кумы – меньше греха.Выше меры конь не скачет.Пересев хуже недосева.
Каково жизнь проживёшь - такую славу наживёшь.
функции в нашей жизни
Диалектика природы «Когда математика стала изучать переменные величины и функции, лишь только она научилась описывать процессы, движение, так она стала необходима всем».Фридрих Энгельс.
Функции в нашей жизни Современная математика знает множество функций, и у каждой свой «неповторимый облик», как неповторим облик каждого из миллиардов людей, живущих на Земле.
Прямая пропорциональность
Периодические функции
Квадратичная функция Траекторией камня, брошенного под углом к горизонту, летящего футбольного мяча или артиллерийского снаряда будет парабола.
Обратная пропорциональная зависимость
Обратная пропорциональная зависимость
Применение в химии
Применение в метеорологии
Применение в биологии
Применение в астрономии
Функции в нашей жизни В наши дни без функций невозможно не только рассчитать космические траектории, работу ядерных реакторов, бег океанской волны и закономерности развития циклона, но и экономично управлять производством, распределением ресурсов, организацией технологичных процессов, прогнозировать течение химических реакций или изменение численности различных взаимосвязанных в природе видов животных и растений, потому что все это – динамические процессы, которые описывает функция.
МОУ Гимназия имени академика Н.Г. Басова при Воронежском госуниверситете Последняя форма определения функции еще не означает конца ее истории.Можно не сомневаться, что в дальнейшем под воздействием новых требований как самой математики, так и других наук – физики, биологии, науки об обществе, определение функции будет изменяться и каждое следующее изменение будет открывать новые горизонты науки и приводить к важным открытиям. С.Л. СоболевБелоусова А.Г., учитель математики, кандидат педагогических наук