Более 2200 лет в мире господствовала единственная геометрия — геометрия Евклида. В основе геометрии Евклида лежит система аксиом, т. е. первоначальных истин, принимаемых без доказательства. Все остальные утверждения—теоремы—доказываются на основе этих аксиом и уже доказанных теорем. Во все времена у ученых вызывал сомнение пятый постулат—аксиома о том, что через точку вне прямой можно провести прямую, параллельную данной, и притом только одну. Более 2200 лет в мире господствовала единственная геометрия — геометрия Евклида. В основе геометрии Евклида лежит система аксиом, т. е. первоначальных истин, принимаемых без доказательства. Все остальные утверждения—теоремы—доказываются на основе этих аксиом и уже доказанных теорем. Во все времена у ученых вызывал сомнение пятый постулат—аксиома о том, что через точку вне прямой можно провести прямую, параллельную данной, и притом только одну.
1826 год считается годом рождения новой геометрии, которая называется теперь геометрией Лобачевского. 1826 год считается годом рождения новой геометрии, которая называется теперь геометрией Лобачевского. Именно эта геометрия – неэвклидова геометрия – геометрия Лобачевского привлекла моё внимание. Мне захотелось узнать о жизни, деятельности нашего соотечественника Николае Ивановиче Лобачевском, основных вопросах его геометрии. В своей работе я ставлю перед собой следующие задачи: 1. Познакомиться с историей изучаемого вопроса. 2. Рассмотреть основные вопросы геометрии Н. И. Лобачевского. 3. Изучить оценку геометрии Лобачевского знаменитыми учёными.
За исключением аксиомы параллельных в её основе лежат те же аксиомы, что и в геометрии Евклида, но к ним добавляется уже не пятый постулат Евклида, а другая аксиома – аксиома Лобачевского, на основании которой сделаны многие выводы, в частности, те, которые предложены ранее. За исключением аксиомы параллельных в её основе лежат те же аксиомы, что и в геометрии Евклида, но к ним добавляется уже не пятый постулат Евклида, а другая аксиома – аксиома Лобачевского, на основании которой сделаны многие выводы, в частности, те, которые предложены ранее.
Аксиома Эвклида. Пусть в данной плоскости дана прямая и лежащая вне этой прямой точка; тогда через эту точку можно провести к данной прямой одну и только одну параллельную прямую. Аксиома Эвклида. Пусть в данной плоскости дана прямая и лежащая вне этой прямой точка; тогда через эту точку можно провести к данной прямой одну и только одну параллельную прямую.
Чтобы ответить на это, надо прежде всего ответить на вопрос, что нужно понимать под точкой, прямой и плоскостью. Чтобы ответить на это, надо прежде всего ответить на вопрос, что нужно понимать под точкой, прямой и плоскостью. Под точкой, прямой и плоскостью нужно понимать реальные объекты трёх категорий, свойства которых раскрываются через систему аксиом геометрии. Что же такое аксиомы?
Это геометрическое предложение, принимаемое нами без доказательства, как исходное, позволяющее вскрыть геометрическое содержание точек, прямых и плоскостей в их взаимном расположении. В школьном курсе геометрии представление о прямой даёт туго натянутая нить, представление о плоскости — поверхность хорошо отполированного гладкого зеркала (это одно из возможных, более простых и привычных истолкований). Нарисуем на листе бумаги треугольник. Сторонами его являются прямые в обычном их истолковании. Если свернём этот лист в форму цилиндра, то стороны треугольника на поверхности цилиндра будут, вообще говоря, кривыми. Эти кривые при развёртывании цилиндра на плоскость, конечно, опять переходят в прямые. Линии на поверхности цилиндра, которые при развёртывании цилиндра на плоскость переходят в прямые, называются геодезическими линиями цилиндра. Геодезическими линиями какой-нибудь поверхности называют линии кратчайшего расстояния между двумя точками поверхности. Это геометрическое предложение, принимаемое нами без доказательства, как исходное, позволяющее вскрыть геометрическое содержание точек, прямых и плоскостей в их взаимном расположении. В школьном курсе геометрии представление о прямой даёт туго натянутая нить, представление о плоскости — поверхность хорошо отполированного гладкого зеркала (это одно из возможных, более простых и привычных истолкований). Нарисуем на листе бумаги треугольник. Сторонами его являются прямые в обычном их истолковании. Если свернём этот лист в форму цилиндра, то стороны треугольника на поверхности цилиндра будут, вообще говоря, кривыми. Эти кривые при развёртывании цилиндра на плоскость, конечно, опять переходят в прямые. Линии на поверхности цилиндра, которые при развёртывании цилиндра на плоскость переходят в прямые, называются геодезическими линиями цилиндра. Геодезическими линиями какой-нибудь поверхности называют линии кратчайшего расстояния между двумя точками поверхности.
псевдосфера получена вращением трактрисы вокруг оси Ох
Сама псевдосфера служит аналогом реальной плоскости Евклида, прямые на псевдосфере – это её геодезические линии. Если на этой поверхности начертить геодезический треугольник (геодезические линии на модели получаются при помощи туго натянутой нити, натёртой мелом и зажатой в двух вершинах треугольника), то сумма углов такого треугольника будет уже меньше двух прямых, т. е. будет как раз выполняться то, что утверждает Лобачевский в своей геометрии. Этот факт легко усматривается на модели и на специально изготовленном чертеже Сама псевдосфера служит аналогом реальной плоскости Евклида, прямые на псевдосфере – это её геодезические линии. Если на этой поверхности начертить геодезический треугольник (геодезические линии на модели получаются при помощи туго натянутой нити, натёртой мелом и зажатой в двух вершинах треугольника), то сумма углов такого треугольника будет уже меньше двух прямых, т. е. будет как раз выполняться то, что утверждает Лобачевский в своей геометрии. Этот факт легко усматривается на модели и на специально изготовленном чертеже
Таким образом, геометрия Лобачевского (планиметрия) нашла своё реальное истолкование на поверхности псевдосферы, т. е. эта геометрия реальна в такой же мере, как и геометрии Евклида Римана, которые реальны, поскольку они выполняются на реальных поверхностях. Таким образом, геометрия Лобачевского (планиметрия) нашла своё реальное истолкование на поверхности псевдосферы, т. е. эта геометрия реальна в такой же мере, как и геометрии Евклида Римана, которые реальны, поскольку они выполняются на реальных поверхностях. Мы гордимся тем, что неевклидова геометрия открыта в России и что её открыл русский учёный Н. И. Лобачевский. Открытие Лобачевского составляет целую эпоху в науке.
В ХХ веке было обнаружено, что геометрия Лобачевского не только имеет важное значение для абстрактной математики, как одна из возможных геометрий, но и непосредственно связана с приложениями математики и физики. Оказалось, что взаимосвязь пространства и времени, открытая в работах Х. Лоренца, А. Пуанкаре, А. Эйнштейна, Г. Минковского и описываемая в рамках специальной теории относительности, имеет непосредственное отношение к геометрии Лобачевского. Например, в расчетах современных синхрофазотронов используются формулы геометрии Лобачевского. Собранные мною материалы по вопросам жизни, деятельности Н. И. Лобачевского, неэвклидовой геометрии полезны многим учащимся 7 – 11 классов, учителям при подготовке докладов, рефератов по теории геометрии. В ХХ веке было обнаружено, что геометрия Лобачевского не только имеет важное значение для абстрактной математики, как одна из возможных геометрий, но и непосредственно связана с приложениями математики и физики. Оказалось, что взаимосвязь пространства и времени, открытая в работах Х. Лоренца, А. Пуанкаре, А. Эйнштейна, Г. Минковского и описываемая в рамках специальной теории относительности, имеет непосредственное отношение к геометрии Лобачевского. Например, в расчетах современных синхрофазотронов используются формулы геометрии Лобачевского. Собранные мною материалы по вопросам жизни, деятельности Н. И. Лобачевского, неэвклидовой геометрии полезны многим учащимся 7 – 11 классов, учителям при подготовке докладов, рефератов по теории геометрии.
Высокий лоб, Высокий лоб, Нахмуренные брови. В холодной бронзе — отражённый луч... Но даже неподвижный и суровый, Он, как живой, Спокоен и могуч. Когда-то здесь, на площади широкой, На этой вот Казанской мостовой, Задумчивый, Неторопливый, Строгий Он шёл на лекции — великий и живой. Пусть новых линий не начертят руки — Он здесь стоит, взнесённый высоко, Как утверждение бессмертья своего. Как вечный символ торжества науки. В. Фирсов