PPt4Web Хостинг презентаций

Главная / Математика / Арифметическая теория действительных чисел по Мерэ-Кантору
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Арифметическая теория действительных чисел по Мерэ-Кантору


Скачать эту презентацию

Презентация на тему: Арифметическая теория действительных чисел по Мерэ-Кантору


Скачать эту презентацию

№ слайда 1 Числовые системыПоволжская государственная социально-гуманитарная академияАрифме
Описание слайда:

Числовые системыПоволжская государственная социально-гуманитарная академияАрифметическая теория действительных чисел по Мерэ-Кантору

№ слайда 2 Георг Кантор(3 марта 1845г. – 6 января 1918г.)Георг Фердинанд Людвиг Филипп Кант
Описание слайда:

Георг Кантор(3 марта 1845г. – 6 января 1918г.)Георг Фердинанд Людвиг Филипп Кантор родился 3 марта 1845 г. в России, в Санкт-Петербурге. Его мать, Мария Анна Бём, происходила из семьи талантливых музыкантов. Его отец Георг Вольдемар Кантор был удачливым коммерсантом и благочестивым лютеранином, передавшим сыну глубокие религиозные убеждения.Когда Кантор был ещё ребёнком, семья переехала из России в Германию, и именно там началось его обучение математике. Защитив в 1868 г. диссертацию по теории чисел, он получил степень доктора в Берлинском университете.

№ слайда 3 Два года спустя он занял должность приват-доцента в Университете в Галле .Один и
Описание слайда:

Два года спустя он занял должность приват-доцента в Университете в Галле .Один из его коллег в Галле, Генрих Эдуард Гейне, работал в то время над теорией тригонометрических рядов и он побудил Кантора заняться сложной проблемой единственности таких рядов. В 1872 г. в возрасте 27 лет Кантор опубликовал статью, содержавшую весьма общее решение этой проблемы, в которой он использовал идеи, выросшие впоследствии в теорию бесконечных множеств.

№ слайда 4 Шарль Мерэ(1835г – 1811г.)В 1869 году Мерэ опубликовал статью, в которой было вп
Описание слайда:

Шарль Мерэ(1835г – 1811г.)В 1869 году Мерэ опубликовал статью, в которой было впервые дано определение вещественного числа и впервые изложена математическая теория вещественных чисел. Его идеи не были должным образом оценены современниками и никак не повлияли на развитие науки. Позже его работы были повторили независимо от него другими ученые — Рихард Дедекинд и Георг Кантор.

№ слайда 5 Создание теории действительного числаЧтобы определить иррациональное число как п
Описание слайда:

Создание теории действительного числаЧтобы определить иррациональное число как предел последовательности рациональных чисел, нужно показать, что такая последовательность сходится. Для этого нужно воспользоваться критерием Коши, который будет справедлив для любых рациональных значений. Однако для того чтобы ответить на вопрос будет ли он справедлив для действительных чисел, необходимо иметь определенными иррациональные числа. Получается замкнутый круг.Эта задача была решена в XIX веке с разных точек зрения и независимо друг от друга Вейерштрассом, Дедекиндом, Кантором и Мерэ.

№ слайда 6 Теория действительного числаВ своем построении Кантор исходит из наличия рациона
Описание слайда:

Теория действительного числаВ своем построении Кантор исходит из наличия рациональных чисел. Затем он вводит фундаментальные последовательности Коши и приписывает им формальный предел. Далее, он разбивает все последовательности на классы эквивалентности. К одному и тому же классу последовательности относятся тогда и только тогда, когда их разность стремится к нулю, то есть

№ слайда 7 Далее, формальные пределы равны друг другу, если они имеют две такие фундаментал
Описание слайда:

Далее, формальные пределы равны друг другу, если они имеют две такие фундаментальные последовательности, которые эквивалентны друг другу или

№ слайда 8 Отношение порядкаОтношение порядка определяется следующим образом.Если и тоЕсли
Описание слайда:

Отношение порядкаОтношение порядка определяется следующим образом.Если и тоЕсли то

№ слайда 9 ЗаключениеТаким образом, классы эквивалентности описывают некоторые вещественные
Описание слайда:

ЗаключениеТаким образом, классы эквивалентности описывают некоторые вещественные числа. Назовем их вещественными числами первого порядка. Если мы попробуем образовать вещественное число большего порядка, составляя фундаментальные последовательности Коши, то получим опять множество вещественных чисел первого порядка. Иными словами, множество вещественных чисел замкнуто.

№ слайда 10 Спасибо за внимание!
Описание слайда:

Спасибо за внимание!

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru