Построение сечений тетраэдра и параллелепипеда. © Ткачева Виктория Викторовна, учитель математики школы № 183 с углубленным изучением английского языка. Санкт-Петербург, 2007год. 900igr.net
Содержание: Цели и задачи. Введение. Понятие секущей плоскости. Определение сечения. Правила построения сечений. Виды сечений тетраэдра. Виды сечений параллелепипеда. Задача на построение сечения тетраэдра с объяснением. Задача на построение сечения тетраэдра с объяснением. Задача на построение сечения тетраэдра по наводящим вопросам. Второй вариант решения предыдущей задачи. Задача на построение сечения параллелепипеда. Задача на построение сечения параллелепипеда. Пожелание учащимся.
Развитие пространственных представлений у учащихся. Познакомить с правилами построения сечений. Выработать навыки построения сечений тетраэдра и параллелепипеда при различных случаях задания секущей плоскости. Сформировать умение применять правила построения сечений при решении задач по темам «Многогранники». Цель работы: Задачи:
Для решения многих геометрических задач необходимо строить их сечения различными плоскостями.
Секущей плоскостью параллелепипеда (тетраэдра) называется любая плоскость, по обе стороны от которой имеются точки данного параллелепипеда (тетраэдра).
Секущая плоскость пересекает грани тетраэдра (параллелепипеда) по отрезкам. Многоугольник, сторонами которого являются данные отрезки, называется сечением тетраэдра (параллелепипеда).
При этом необходимо учитывать следующее: 1. Соединять можно только две точки, лежащие в плоскости одной грани. Для построения сечения нужно построить точки пересечения секущей плоскости с ребрами и соединить их отрезками. 2. Секущая плоскость пересекает параллельные грани по параллельным отрезкам. 3. Если в плоскости грани отмечена только одна точка, принадлежащая плоскости сечения, то надо построить дополнительную точку. Для этого необходимо найти точки пересечения уже построенных прямых с другими прямыми, лежащими в тех же гранях.
Какие многоугольники могут получиться в сечении ? Тетраэдр имеет 4 грани В сечениях могут получиться: Четырехугольники Треугольники
Треугольники Параллелепипед имеет 6 граней Четырехугольники Шестиугольники Пятиугольники В его сечениях могут получиться:
Построить сечение тетраэдра DABC плоскостью, проходящей через точки M,N,K Проведем прямую через точки М и К, т.к. они лежат в одной грани (АDC). 2. Проведем прямую через точки К и N, т.к. они лежат в одной грани (СDB). 3. Аналогично рассуждая, проводим прямую MN. 4. Треугольник MNK – искомое сечение.
Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. E F K L A B C D M 1. Проводим КF. 2. Проводим FE. 3. Продолжим EF, продол- жим AC. 5. Проводим MK. 7. Проводим EL EFKL – искомое сечение Правила
Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. E F K L A B C M D Какие точки можно сразу соединить? С какой точкой, лежащей в той же грани можно соединить полученную дополнительную точку? Какие прямые можно продолжить, чтобы получить дополнительную точку? F и K, Е и К ЕК и АС С точкой F Соедините получившиеся точки, лежащие в одной грани, назовите сечение. ЕLFK Правила Второй способ
E F L A B C D О Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. K Первый способ Правила
Вывод: независимо от способа построения сечения одинаковые. Способ №1. Способ №2.
A1 А В В1 С С1 D D1 M N Построить сечения параллелепипеда плоскостью, проходящей через точки В1, М, N O К Е P Правила 1. MN 2.Продолжим MN,ВА 4. В1О 6. КМ 7. Продолжим MN и BD. 9. В1E 5. В1О ∩ А1А=К 8. MN ∩ BD=E 10. B1Е ∩ D1D=P , PN 3.MN ∩ BA=O
A1 А В В1 С С1 D D1 Построить сечение параллелепипеда плоскостью, проходящей через точки M,A,D. М 1. AD 2. MD 3. ME//AD, т.к. (ABC)//(A1B1C1) 4. AE 5. AEMD – сечение. E
ВЫ МНОГОЕ УЗНАЛИ И МНОГОЕ УВИДЕЛИ! ТАК ВПЕРЕД, РЕБЯТА: ДЕРЗАЙТЕ И ТВОРИТЕ! СПАСИБО ЗА ВНИМАНИЕ.