Последовательности составляют такие элементы природы, которые можно как то пронумеровать. Последовательности составляют такие элементы природы, которые можно как то пронумеровать.
Числа, образующие последовательность, называют соответственно первым, вторым, третьим, и т. д., n-ным членами последовательности. Числа, образующие последовательность, называют соответственно первым, вторым, третьим, и т. д., n-ным членами последовательности.
Аналитический способ задаёт последовательность с помощью формулы n-ного члена. Это позволяет вычислить член с любым заданным номером. Аналитический способ задаёт последовательность с помощью формулы n-ного члена. Это позволяет вычислить член с любым заданным номером.
х1=1; хn+1=(n+1)xn х1=1; хn+1=(n+1)xn n=1; 2; 3; … можно записать с многоточием 1; 2; 6; 24; 120; 720; …
Рекуррентное задание последовательности может быть и более сложным. Например, равенства: х1=1; х2=1; хn+2= хn+1 + хn Рекуррентное задание последовательности может быть и более сложным. Например, равенства: х1=1; х2=1; хn+2= хn+1 + хn Также позволяют вычислять поочередно члены последовательности: х3= х2 + х1 =1+1=2; х4= х3 + х2 =2+1=3; х5= х4 + х3 =3+2=5; … .
Проще всего выписывать члены этой последовательности, если перевести равенство на русский язык: каждый член последовательности, начиная с третьего, равен сумме двух предыдущих членов. Проще всего выписывать члены этой последовательности, если перевести равенство на русский язык: каждый член последовательности, начиная с третьего, равен сумме двух предыдущих членов. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, … .
Члены этой последовательности называются числами Фибоначчи – по имени средневекового итальянского ученого Леонардо Фибоначчи (1180 – 1240 ) из г. Пизы. Последовательность Фибоначчи рассмотрена им в 1202 году в книге «Liber abacci». Эти числа встречаются в математике и природе довольно часто: треугольник Паскаля, количество веток на дереве или приплод от пары кроликов за определенный период времени, семена в подсолнечнике. Члены этой последовательности называются числами Фибоначчи – по имени средневекового итальянского ученого Леонардо Фибоначчи (1180 – 1240 ) из г. Пизы. Последовательность Фибоначчи рассмотрена им в 1202 году в книге «Liber abacci». Эти числа встречаются в математике и природе довольно часто: треугольник Паскаля, количество веток на дереве или приплод от пары кроликов за определенный период времени, семена в подсолнечнике.
Блез Паскаль (1623 – 1662 ) один из самых знаменитых людей в истории человечества. Треугольник Паскаля – это бесконечная числовая таблица треугольной формы, в которой на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа в предшествующей строке: Блез Паскаль (1623 – 1662 ) один из самых знаменитых людей в истории человечества. Треугольник Паскаля – это бесконечная числовая таблица треугольной формы, в которой на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа в предшествующей строке:
Между числами Фибоначчи и треугольником Паскаля существует интересная связь. Подсчитав для каждой восходящей диагонали треугольника Паскаля сумму всех стоящих на этой диагонали чисел, получим: Между числами Фибоначчи и треугольником Паскаля существует интересная связь. Подсчитав для каждой восходящей диагонали треугольника Паскаля сумму всех стоящих на этой диагонали чисел, получим:
Итак, мы разобрали понятие последовательности и способы ее задания. Итак, мы разобрали понятие последовательности и способы ее задания. Приведите примеры числовой последовательности: конечной и бесконечной. Какие способы задания последовательности вы знаете. Какая формула называется рекуррентной?
Д. Ф. Айвазян. Алгебра, 9класс. Поурочные планы, - Волгоград «Учитель - АСТ», 2003 г. Д. Ф. Айвазян. Алгебра, 9класс. Поурочные планы, - Волгоград «Учитель - АСТ», 2003 г. М. Б. Миндюк, Н. Г. Миндюк. Тематический контроль по алгебре, 9 класс, - М. «Интеллект - центр», 2004 г. К. С. Муравин и др. Алгебра, 9 класс, - М. «Дрофа», 2000 г.