Чётные и нечётные функции
Определение Функция y=f (x) называется чётной, если: D (f) симметрична относительно нуля; 2) для любого х Є D (f) верно равенство: f (-x) = f (x). Функция y=f (x) называется нечётной, если: 1) D (f) симметрична относительно нуля; 2) для любого х Є D (f) верно равенство: f (-x) = - f (x). y (х) = 5 x²- |X| Решение: D (y) = R y (- x)= =5 (- x)² - |- x| = = 5 x² - |x|= = y (x) Значит, функция - чётная у(х) = 7x +x³ Решение: D (y) = R y (- x)= = 7(- x) +(- x)³= = - 7 x - x³ = = - (7x +x³) = - y (x) Значит, функция - нечётная
Функция f (x) – чётная, f ( 3 ) = 25 , тогда f ( -3 ) = ? f ( -8 ) = -71, тогда f ( 8 ) = ? Функция g ( x ) – нечётная, g ( 7 ) = 43, тогда g ( -7 ) = ? g ( - 2 ) = -64, тогда g ( 2 ) = ?
Существуют функции, которые не обладают свойствами чётности или нечётности. Значит, данная функция не является ни чётной, ни нечётной.
Является ли функция четной или нечетной?
Повторение Задание: 1. Найдите координаты точек А, В, С 2. Как взаимосвязаны координаты точек А и В? 3. Как расположены точки А и В относительно оси ординат? 4. Как взаимосвязаны координаты точек А и С? 5. Как расположены точки А и С относительно начала координат?
Повторение Графики каких функций здесь изображены? Сравните чертежи. В чём их сходство и различие?
Свойство графиков чётных функций По определению: если функция – чётная, то противоположным значениям х соответствуют равные значения у. Сделайте вывод: 1) об области определения функции; 2) о расположении точек графика чётной функции. Вывод: 1) область определения симметрична относительно точки (0; 0); 2) график чётной функции состоит из точек, симметричных относительно оси ординат. График чётной функции симметричен относительно оси ординат.
Свойство графиков нечётных функций По определению: если функция – нечётная, то противоположным значениям х соответствуют противоположные значения у. Сделайте вывод: 1) об области определения функции; 2) о расположении точек графика нечётной функции. Вывод:1) область определения симметрична относительно точки (0; 0); 2)график нечётной функции состоит из точек, симметричных относительно начала координат. График нечётной функции симметричен относительно начала координат.
Чётные функции Симметрия относительно оси Оy Нечётные функции Симметрия относительно начала координат
Может ли быть четной или нечетной функция, областью определения которой является:
Укажите графики чётных и нечётных функций
Укажите график чётной функции
Укажите график нечётной функции
Укажите график функции, которая не является чётной или нечётной
Ломаная АВС, где А ( 5; 1 ), В ( 3; 5 ), С ( 0; 0 ) – часть графика некоторой функции f ( x ). Область определения этой функции – промежуток [ -5; 5 ]. Постройте ее график, зная, что: f ( x ) – четная . б) f ( x ) – нечетная.
Существуют функции, которые не обладают свойствами чётности или нечётности. График в этом случае не обладает свойством симметрии
Желаем успехов в учёбе Каратанова М. Рыженкова Т.Н. Михайлова Л.П. User