PPt4Web Хостинг презентаций

Главная / Математика / "Вычисление площадей плоских фигур с помощью определенного интеграла"
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: "Вычисление площадей плоских фигур с помощью определенного интеграла"


Скачать эту презентацию

Презентация на тему: "Вычисление площадей плоских фигур с помощью определенного интеграла"


Скачать эту презентацию



№ слайда 1
Описание слайда:

№ слайда 2
Описание слайда:

№ слайда 3
Описание слайда:

№ слайда 4
Описание слайда:

№ слайда 5 «Интеграл» придумал Якоб Бернулли (1690г.) «Интеграл» придумал Якоб Бернулли (16
Описание слайда:

«Интеграл» придумал Якоб Бернулли (1690г.) «Интеграл» придумал Якоб Бернулли (1690г.) «восстанавливать» от латинского integro «целый» от латинского integer

№ слайда 6 Этот метод был подхвачен и развит Архимедом, и использовался для расчёта площаде
Описание слайда:

Этот метод был подхвачен и развит Архимедом, и использовался для расчёта площадей парабол и приближенного расчёта площади круга. Этот метод был подхвачен и развит Архимедом, и использовался для расчёта площадей парабол и приближенного расчёта площади круга.

№ слайда 7
Описание слайда:

№ слайда 8
Описание слайда:

№ слайда 9 И. Ньютон И. Ньютон
Описание слайда:

И. Ньютон И. Ньютон

№ слайда 10
Описание слайда:

№ слайда 11
Описание слайда:

№ слайда 12 y = 3 – x2, y = 3 – x2, y = 1+ | x |
Описание слайда:

y = 3 – x2, y = 3 – x2, y = 1+ | x |

№ слайда 13
Описание слайда:

№ слайда 14
Описание слайда:

№ слайда 15 Решение: Решение: 1. Составим уравнение касательной. 2. Построим графики функций
Описание слайда:

Решение: Решение: 1. Составим уравнение касательной. 2. Построим графики функций. 3. Найдем площадь фигуры.

№ слайда 16
Описание слайда:

№ слайда 17
Описание слайда:

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru