Полуправильные многоугольники Выполнила ученица группы ПК-22 Чепкасова Вера Васильевна Проверила ЧепуштановаВера Алексеевна
Полуправильные многогранники (Тела Архимеда). Если гранями правильного многогранника или Платоновых тел являются однотипные правильные многоугольники (треугольники, квадраты и пентагоны), то гранями полуправильных многогранников, являются правильные многоугольники разных типов. К полуправильным многогранникам относят n-угольные призмы, все ребра которых равны, а также антипризмы. Кроме этих двух бесконечных серий полуправильных многогранников имеется 13 полуправильных многогранников, которые впервые открыл и описал Архимед, - это тела Архимеда.
Усеченный тетраэдр Если срезать углы тетраэдра плоскостями, каждая из которых отсекает третью часть его ребер, выходящих из одной вершины, то получим усеченный тетраэдр, имеющий 8 граней. Из них 4 – правильные шестиугольники и 4 – правильные треугольники.
Усеченный октаэдр Если указанным способом срезать вершины октаэдра, то получится усеченный октаэдр, имеющий 14 граней. 6 квадратов и 8 гексагонов.
Усеченный куб Усеченный куб имеет 14 граней. Из них 8 – правильные треугольники и 6 – правильные восьмиугольники (октагоны).
Усеченный икосаэдр Усеченный икосаэдр имеет 32 грани. Из них 12 – правильные пятиугольники (пентагоны) и 20 – правильные шестиугольники (гексагоны). Поверхность футбольного мяча изготавливают в форме поверхности усеченного икосаэдра
Усеченный додекаэдр Усеченный додекаэдр имеет 32 грани. Из них 20 – правильные треугольники и 12 -правильные десятиугольники (декадоны).
Икосододекаэдр Если в додекаэдре отсекающие плоскости провести через середины ребер, выходящих из одной вершины, то получим икосододекаэдр. У него 20 граней – правильные треугольники и 12 – правильные пятиугольники (пентагоны), то есть все грани икосаэдра и додекаэдра.
Ромбокубооктаэдр Его поверхность состоит из граней куба и октаэдра, к которым добавлено еще 12 квадратов. Итого ромбокубооктаэдр имеет 8 треугольников и 18 квадратов.
Кубооктаэдр Кубооктаэдр имеет 14 граней. Из них 8 треугольников и 6 квадратов.
Ромбоикосододекаэдр Поверхность ромбоикосододекаэдра состоит из граней икосаэдра, додекаэдра и еще 30 квадратов. Итого он имеет 62 грани. Из них 20 треугольников, 30 квадратов и 12 пентагонов.
«Курносый» куб Поверхность курносого куба состоит из граней куба окруженных правильными треугольниками. У него 38 граней. Из них 32 треугольника и 6 квадратов.
«Курносый» додекаэдр Поверхность курносого додекаэдра из граней додекаэдра окруженных правильными треугольниками. 85 треугольников и 12 пентагонов.
Усеченный кубооктаэдр Поверхность усеченного кубооктаэдра состоит из 12 квадратов, 8 правильных шестиугольников (гексагонов) и 6 правильных восьмиугольников (октагонов).
Усеченный икосододекаэдр Поверхность усеченного икосододекаэдра состоит из 30 квадратов, 20 правильных шестиугольников (гексагонов) и 12 правильных десятиугольников (декагонов).
Новое «архимедово тело» - псевдоромбокубооктаэдр Получается из ромбокубооктаэдра поворотом его верхней восьмиугольной «крышки» на 45 градусов по оси – открыл Миллер в 1930 г. и независимо от него В. Г. Ашкинузе и Л. Есаулова.
Кроме «архимедовых тел» к полуправильным многогранникам относятся все правильные n-угольные призмы, все ребра которых равны. К полуправильным многогранникам относятся также все так называемые антипризмы.