Определение 1 Определение 1 Пусть – некоторое множество логических переменных. Элементарная конъюнкция, в которую входят все логические переменные, называется полной элементарной конъюнкцией относительно множества X .
Определение 2 Определение 2 Дизъюнктивная нормальная форма называется совершенной (СДНФ), если все составляющие ее элементарные конъюнкции являются полными. Примеры
Теорема Теорема Высказывание, не являющееся тождественно ложным, приводимо к СДНФ. Правило приведения высказывания к СДНФ СДНФ содержит столько полных элементарных конъюнкций, сколько единиц в последнем столбце таблице истинности. Вид каждой полной элементарной определяется соответствующим набором значений переменных, а именно, если переменная принимает значение 0, то над ней в полной элементарной конъюнкцией ставится отрицание, иначе – отрицание не ставится.
Построить по таблице истинности СДНФ Построить по таблице истинности СДНФ
«Вернувшись домой, Мегрэ позвонил на набережную Орфевр. «Вернувшись домой, Мегрэ позвонил на набережную Орфевр. - Говорит Мегрэ. Есть новости? - Да, шеф. Поступили сообщения от инспекторов. Торранс установил, что если Франсуа был пьян, то либо Этьен убийца, либо Франсуа лжет. Жуссье считает, что или Этьен убийца, или Франсуа не был пьян и убийство произошло после полуночи. Инспектор Люка просил передать Вам, что если убийство произошло после полуночи, то либо Этьен убийца, либо Франсуа лжет. Затем звонила … - Все. Спасибо. Этого достаточно. – Комиссар положил трубку. Он знал, что трезвый Франсуа никогда не лжет. Теперь он знал все.» Что знал Мегрэ?
Пусть P=« Франсуа был пьян» L=«Франсуа лжет» I=«Этьен убийца» U=«Убийство произошло после полуночи» Тогда получим высказывание
Вопросы: Является ли СДНФ-ДНФ? Можно ли построить СДНФ для высказывания, в таблице истинности которого отсутствуют 1?