PPt4Web Хостинг презентаций

Главная / Геометрия / Расстояние между скрещивающимися прямыми
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Расстояние между скрещивающимися прямыми


Скачать эту презентацию

Презентация на тему: Расстояние между скрещивающимися прямыми


Скачать эту презентацию



№ слайда 1 Семинар-практикум Расстояние между скрещивающимися прямымиЗубарева Т.В., учитель
Описание слайда:

Семинар-практикум Расстояние между скрещивающимися прямымиЗубарева Т.В., учитель математикиТемниковской СОШ №1

№ слайда 2 Цели: Систематизация и обобщение приемов работы с пространственными объектами: п
Описание слайда:

Цели: Систематизация и обобщение приемов работы с пространственными объектами: прямыми , плоскостями и теламиЗнакомство с новым понятием: расстояние между скрещивающимися прямымиУсвоение и отработка общих приемов определения расстояний между скрещивающимися прямыми

№ слайда 3 Задачи: Устная работа по актуализация необходимых известных приемов работы с про
Описание слайда:

Задачи: Устная работа по актуализация необходимых известных приемов работы с пространственными объектами: прямыми и плоскостямиОпределение нового понятия: расстояние между скрещивающимися прямымиРешение типовых задач на определение расстояний между скрещивающимися прямымиРешение проблемной задачи на обобщение приема нахождения расстояния между скрещивающимися прямыми

№ слайда 4 Средства: Модели пространственных фигур, чертежи к задачамТеорема Фалеса и теоре
Описание слайда:

Средства: Модели пространственных фигур, чертежи к задачамТеорема Фалеса и теорема о трех перпендикулярах Приемы стерео и планиметрических построенийТиповые и проблемные задачиКомпьютер с мультимедийным проектором

№ слайда 5 План: Первый урок: Актуализация: выполнение устных заданий, доказательство теоре
Описание слайда:

План: Первый урок: Актуализация: выполнение устных заданий, доказательство теоремы, решение задачи Определение и усвоение нового понятия Второй урок . Решение типовых задач на усвоение и отработку нового понятияТретий урок. Проблемная задача на обобщение приема нахождения расстояния между двумя скрещивающимися прямыми

№ слайда 6 Первый урок Подготовительные устные задачи Параллельны ли прямая B1K и плоскость
Описание слайда:

Первый урок Подготовительные устные задачи Параллельны ли прямая B1K и плоскость DD1C1C?Параллельны ли прямые C1D и B1K?Параллельны ли прямая AC и плоскость A1B1C1D1?Параллельны ли прямая AL и плоскость A1B1C1D1?

№ слайда 7 Первый урок Подготовительные устные задачиУстановите все пары: прямая и параллел
Описание слайда:

Первый урок Подготовительные устные задачиУстановите все пары: прямая и параллельная ей плоскость

№ слайда 8 Первый урок Подготовительные устные задачиКак определяется расстояние между прям
Описание слайда:

Первый урок Подготовительные устные задачиКак определяется расстояние между прямой и параллельной ей плоскостью?Найдите расстояние между прямой MN и плоскостью AA1D1DНайдите расстояние между прямой MN и плоскостью DD1C1CНайдите расстояние между прямой B1K и плоскостью DD1C1C

№ слайда 9 Первый урок Постановка проблемыКак можно определить расстояние между скрещивающи
Описание слайда:

Первый урок Постановка проблемыКак можно определить расстояние между скрещивающимися прямыми ?Найдите расстояние между прямыми: A1B и C1D, A1B и DK ,A1B и DL.

№ слайда 10 Первый урок Какие следствия можно сформулировать?Отрезок с концами на двух скрещ
Описание слайда:

Первый урок Какие следствия можно сформулировать?Отрезок с концами на двух скрещивающихся прямых одновременно перпендикулярный им и есть расстояние между этими прямымиЭтот отрезок равен расстоянию от одной из скрещивающихся прямых до параллельной ей плоскости в которой лежит другая прямая

№ слайда 11 Первый урок ТеоремаДиагональ куба перпендикулярна каждой диагонали грани куба, с
Описание слайда:

Первый урок ТеоремаДиагональ куба перпендикулярна каждой диагонали грани куба, скрещивающейся с нейДоказательство: ACBB1D1D, отсюда AC любой прямой плоскости BB1D1D

№ слайда 12 Первый урок Следствие теоремы. Задача.Найдите расстояние между скрещивающимися д
Описание слайда:

Первый урок Следствие теоремы. Задача.Найдите расстояние между скрещивающимися диагональю куба и диагональю его грани. Решение. Треугольник BB1D перпендикулярен AC. Отрезок OM B1D, будет перпендикулярен и AC . OM - расстояние между AC и B1D.Рассмотрим треугольники BB1D и OMD. Из их подобия следует OM/BB1=OD/B1D

№ слайда 13 Второй урок Обобщение.Три типовых случая определения расстояния между скрещивающ
Описание слайда:

Второй урок Обобщение.Три типовых случая определения расстояния между скрещивающимися прямымиОбщий перпендикуляр к обеим прямым (единственный!)Перпендикуляр от одной из прямых до параллельной плоскости, в которой расположена другая прямая, конец которого не обязательно лежит на прямой!Перпендикуляр между параллельными плоскостями в которых лежат скрещивающиеся прямые, концы которого не обязательно лежат на прямых!

№ слайда 14 Второй урок Проблема: Как найти плоскость с одной прямой, параллельную другой ск
Описание слайда:

Второй урок Проблема: Как найти плоскость с одной прямой, параллельную другой скрещивающейся прямой ? Достаточно провести через одну из скрещивающихся прямых прямую линию, параллельную другой скрещивающейсяЗаметим, что отрезок соединяющий точки пересечения пар параллельных прямых не равен расстоянию между скрещивающимися прямыми!

№ слайда 15 Второй урок Типовые задачиЧаще других возникают задачи с перпендикулярными скрещ
Описание слайда:

Второй урок Типовые задачиЧаще других возникают задачи с перпендикулярными скрещивающимися прямыми. К этому типу относится уже рассмотренная задача о расстоянии между диагональю куба и скрещивающейся диагональю его грани.Стандартный прием решения этих задач заключается в проведении плоскости, в которой лежит одна прямая, перпендикулярно другой скрещивающейся прямой

№ слайда 16 Второй урок Решение задачДан куб ABCDA1B1C1D1 с длиной ребра AB=a. Найдите расст
Описание слайда:

Второй урок Решение задачДан куб ABCDA1B1C1D1 с длиной ребра AB=a. Найдите расстояние между прямыми AD и D1 M, где M – середина ребра DCПлоскость грани DD1C1C перпендикулярна ребру AD. Из точки D опустим перпендикуляр DK на D1 M. Треугольники DD1M и DKM подобны с коэффициентом подобия 1/2. DK=D1M/2=a√5/2

№ слайда 17 Второй урок Решение задач Дан куб ABCDA1B1C1D1 с длиной ребра AB=a. Найдите расс
Описание слайда:

Второй урок Решение задач Дан куб ABCDA1B1C1D1 с длиной ребра AB=a. Найдите расстояние между прямыми BD и O1 M, где M – середина AO, O и O1 – центры граней ABCD и A1B1C1D1, соответственноДиагональная плоскость AA1C1C перпендикулярна прямой BD. Из точки O опустим перпендикуляр OK на O1 M. Треугольники OO1M и OKM подобны. OK=OO1OM/O1M =a/3 (по теореме Пифагора O1M=3/2√2, OM=1/2√2)

№ слайда 18 Второй урок Прием параллельных плоскостейДан куб ABCDA1B1C1D1 с длиной ребра AB=
Описание слайда:

Второй урок Прием параллельных плоскостейДан куб ABCDA1B1C1D1 с длиной ребра AB=a. Найдите расстояние между скрещивающимися диагоналями AC и A1 B смежных граней ABCD и AA1B1BПроведем диагональ D1C||A1B, получим треугольник AD1C||A1B, проведем диагональ A1C1||AC, получим треугольник A1BC1||AC

№ слайда 19 Второй урок Прием параллельных плоскостейРассмотрим сечение куба плоскостью BB1D
Описание слайда:

Второй урок Прием параллельных плоскостейРассмотрим сечение куба плоскостью BB1D1D. Искомое расстояние MN по теореме Фалеса равно 1/3 диагонали B1D: MN=a/√3Замечание. Перпендикулярность B1D к B1O и OD1 следует из доказанной теоремы на первом уроке.

№ слайда 20 Третий урок Обобщение приемов определения расстояний между скрещивающимися прямы
Описание слайда:

Третий урок Обобщение приемов определения расстояний между скрещивающимися прямым Проблема. Даже в случае, если определены параллельные плоскости, в которых лежат прямые, часто трудно найти расстояние между ними –необходимо еще провести третью перпендикулярную плоскостьДля решения проблемы достаточно провести эту плоскость перпендикулярно к одной из прямых!

№ слайда 21 Третий урок Задача на обобщение приема Проведем через точку A прямую параллельну
Описание слайда:

Третий урок Задача на обобщение приема Проведем через точку A прямую параллельную BM. Из точки B опустим на неё перпендикуляр BK.По теореме о трех перпендикулярах DK AK и треугольник DBK треугольнику ADK , в которой лежит прямая AD.Прямая BM находится на расстоянии BN от плоскости ADK, равном длине перпендикуляра BN к DK!

№ слайда 22 Третий урок Задача на обобщение приема Вычислим длину отрезка BN через площадь D
Описание слайда:

Третий урок Задача на обобщение приема Вычислим длину отрезка BN через площадь DBK и длину DK. SDBK =a2/4, DK=√5∙a/2, BN=2 SDBK /DK BN=a/ √5

№ слайда 23 Третий урок Рефлексия. Осмысление обобщенного приема Рассмотренный способ послед
Описание слайда:

Третий урок Рефлексия. Осмысление обобщенного приема Рассмотренный способ последней задачи носит обобщенный характер.Если не проходят более элементарные приемы, то последний способ часто оказывается решающим.Идея этого приема связана с двумя дополнительными объектами: а) плоскостью, в которой лежит одна из прямых. б) перпендикуляром к ней, через который проходит вторая прямая.

№ слайда 24 Третий урок Ориентировочная основа обобщенного приема Первый этап: через точку A
Описание слайда:

Третий урок Ориентировочная основа обобщенного приема Первый этап: через точку A прямой проводим прямую параллельно BMВторой этап: из точки B опустим перпендикуляр до пересечения с прямой AEТретий этап: в прямоугольном треугольнике DBK опустим перпендикуляр BN на DK. Его длина и будет равна расстоянию между прямыми AD и BM

№ слайда 25 Третий урок Как найти точки на скрещивающихся прямых AD и BM, ближайшие друг к д
Описание слайда:

Третий урок Как найти точки на скрещивающихся прямых AD и BM, ближайшие друг к другу? Через точку N проводим прямую параллельно BM до пересечения с прямой AD в точке L (в плоскости треугольника ADK).Прямоугольный треугольник DBK переносим параллельно вдоль прямой на отрезок NL. Новые положения точек B и N будут ближайшими друг к другу точками прямых AD и BM

№ слайда 26 Третий урок Задача на закрепление обобщеннного способаВ кубе с длиной ребра a=5
Описание слайда:

Третий урок Задача на закрепление обобщеннного способаВ кубе с длиной ребра a=5 на ребрах AD и D1C взяты точки K и M, соответственно. Найдите расстояние между прямыми A1K и D1M, если AK=4 и DM=3.Решение. Через точку E пересечения A1K c D1D проведем прямую || D1M. Из точки D1 на неё опустим перпендикуляр до пересечения в точке F. Высота D1N треугольника A1D1F и дает искомое расстояние.

№ слайда 27 Третий урок Решение задачи на закреплениеВычисления. D1H=DMD1E/D1D=35/4=15/4. EH
Описание слайда:

Третий урок Решение задачи на закреплениеВычисления. D1H=DMD1E/D1D=35/4=15/4. EH2=A1D12+D1F2=2527/4. EH=45√3/2. SHD1E=225/8. D1F=2SHD1E/EH=5/√3. A1F2=AD12+D1F2=25+25/3. A1F=10/√3. SA1D1F=25/(2√3). D1N=2SH1D1F/A1F=25/10=5/2. Оценка ответа на смысл. D1N=2,5 <DM=3. Проверим путем параллельного переноса D1N до пересечения с A1K.

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru