PPt4Web Хостинг презентаций

Главная / Алгебра / Задачи на делимость
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Задачи на делимость


Скачать эту презентацию

Презентация на тему: Задачи на делимость


Скачать эту презентацию



№ слайда 1
Описание слайда:

№ слайда 2 Теорема 1. Если каждое слагаемое суммы делится на одно и то же число, то и сумма
Описание слайда:

Теорема 1. Если каждое слагаемое суммы делится на одно и то же число, то и сумма делится на это число. Теорема 1. Если каждое слагаемое суммы делится на одно и то же число, то и сумма делится на это число. Теорема 2. Если уменьшаемое и вычитаемое делятся на одно и то же число, то и разность делится на это число. Теорема 3. Если в произведении нескольких натуральных чисел хотя бы один из сомножителей делится на какое-то число, то и все произведение делится на это число. Теорема 4. Если некоторое целое число делится на другое, а это другое – на третье, то и первое число делится на третье.

№ слайда 3 Одно из п последовательных целых чисел делится на п; Одно из п последовательных
Описание слайда:

Одно из п последовательных целых чисел делится на п; Одно из п последовательных целых чисел делится на п; Одно из двух последовательных четных чисел делится на 4; Произведение трех последовательных целых чисел делится на 6; Произведение двух последовательных четных чисел делится на 8.

№ слайда 4 Основываясь на известных нам признаках делимости и теоремах 1- 4, можно сформули
Описание слайда:

Основываясь на известных нам признаках делимости и теоремах 1- 4, можно сформулировать и признаки делимости на 4, на 6, на 8, на 15. Основываясь на известных нам признаках делимости и теоремах 1- 4, можно сформулировать и признаки делимости на 4, на 6, на 8, на 15. В дополнительной литературе я отыскал признаки делимости на 7, 11, 13, 19, 31, 137, Но для решения очень многих задач на делимость этого оказалось недостаточно. Просматривая учебники математики разных авторов, собрал достаточно большую коллекцию интересующих меня задач.

№ слайда 5 Делимость по последним цифрам числа Делимость по сумме цифр числа Делимость сост
Описание слайда:

Делимость по последним цифрам числа Делимость по сумме цифр числа Делимость составных чисел

№ слайда 6 Во множестве отобранных задач на делимость было очень трудно разобраться, но зат
Описание слайда:

Во множестве отобранных задач на делимость было очень трудно разобраться, но затем удалось разбить их на группы, каждая из которых имела какой-то определенный метод решения. А некоторые задачи можно было решить и не одним способом. Во множестве отобранных задач на делимость было очень трудно разобраться, но затем удалось разбить их на группы, каждая из которых имела какой-то определенный метод решения. А некоторые задачи можно было решить и не одним способом. Во многих из этих задач есть такой элемент, который делает их непохожими на известные задачи, и возможно, потребует для решения некоторой сообразительности, смекалки, творческого подхода. Для решения отобранных задач на делимость, я использовал методы, суть которых дается на конкретных примерах.

№ слайда 7 Задача 1 Задача 1 Доказать, что n3+3n2+5n+3 делится на 3 при любом натуральном n
Описание слайда:

Задача 1 Задача 1 Доказать, что n3+3n2+5n+3 делится на 3 при любом натуральном n. Решение: представим наш многочлен в виде суммы двух слагаемых: n3+3n2+5n+3=n3+3n2+2n+3n+3=n(n2+3n+2)+3(n+1)=n(n+1)(n+2)++3(n+1), первое слагаемое есть произведение трех последовательных натуральных чисел, одно из которых обязательно делится на 3, а второе слагаемое содержит множитель 3, => оно делится на 3, а значит и вся сумма делится на 3.

№ слайда 8 Задача 2 Задача 2 Найти все целые x и y, удовлетворяющих уравнению x+y=xy. Решен
Описание слайда:

Задача 2 Задача 2 Найти все целые x и y, удовлетворяющих уравнению x+y=xy. Решение: x+y=xy, <=> x-xy = -y, x(1-y) = -y, x = -y/(1-y) x=y/(y-1)=(y-1+1)/(y-1)=1+(1/(y-1)) (1/(y-1)) є Z, если y-1=±1 y-1=1, y=2 y-1=-1, y=0 Если y=0, то x=0/(1-0)=0 Если y=2, то х=-2/(1-2)=2 Ответ: (0;0) и (2;2).

№ слайда 9 Задача 4 Задача 4 Доказать, что разность между квадратом числа, которое не делит
Описание слайда:

Задача 4 Задача 4 Доказать, что разность между квадратом числа, которое не делится на 3, и единицей, делится на 3. Решение: Если число не делится на 3, то оно имеет вид 3k+1 или 3k+2. В первом случае разность между его квадратом и единицей равна (3k+1)2-1=9k2+6k+1-1=9k2+6k, во втором (3k+2)2- - 1=9k2+12k+4-1=9k2+12k+3. В обоих случаях разность делится на 3, т.к. каждое слагаемое делится на 3.

№ слайда 10 Задача 5. Задача 5. Доказать, что выражение 35n-2*5n+11n делится на 6 при любом
Описание слайда:

Задача 5. Задача 5. Доказать, что выражение 35n-2*5n+11n делится на 6 при любом натуральном n. Решение: Запишем наше выражение в таком виде: 35n - - 2*5n+11n=(35n-5n)+(11n-5n), тогда 35n - 5n делится на разность оснований степеней, т.е. на 35 - 5=30, а следовательно, делится и на 6, 11n - -5n также делится на разность оснований 11-5=6.

№ слайда 11 Задача 6. Задача 6. Доказать, что уравнение x2+1974=y2 не имеет решений в целых
Описание слайда:

Задача 6. Задача 6. Доказать, что уравнение x2+1974=y2 не имеет решений в целых числах. Решение: Предположим, что уравнение имеет решения в целых числах. Запишем данное уравнение в таком виде: 1974=y2-x2. Так как 1974 четное число, то, чтобы уравнение имело решение, необходимо, чтобы разность y2-x2 была четным числом, а это возможно только тогда, когда x и у числа одинаковой четности, т.е. x и у одновременно четные, или оба нечетные числа. 1974=y2-x2 , <=> 1974=(у - х)(у + х). Правая часть делится на 4, а левая – нет, значит, целых решений уравнение не имеет.

№ слайда 12 Пример 7. Шестой метод. Пример 7. Шестой метод. Найти все целочисленные решения
Описание слайда:

Пример 7. Шестой метод. Пример 7. Шестой метод. Найти все целочисленные решения уравнения 16х+20у=14. Решение: Находим наибольший общий делитель 16 и 20; (16,20) = 4, а число 14 не делится на 4, то по теореме уравнение не имеет целочисленных решений.

№ слайда 13 Задача8. Задача8. Доказать, что 62n+3n+2+3n делится на 11 при всех натуральных n
Описание слайда:

Задача8. Задача8. Доказать, что 62n+3n+2+3n делится на 11 при всех натуральных n. Решение: 62n+3n(9+1)=36n+10*3n=(33+3)n+10*3n. Все члены разложения бинома, кроме последнего, имеют множителем число 33, следовательно, делятся на 11. Последний член разложения – 3n. Тогда данное число можно записать так: 36n+10*3n=33A+11*3n, где А – частное от деления n первых членов разложения бинома Ньютона на 33. Но если каждое слагаемое делится на 11, то и сумма делится на 11.

№ слайда 14 Выводы: Зная методы исследований признаков делимости натуральных чисел можно сфо
Описание слайда:

Выводы: Зная методы исследований признаков делимости натуральных чисел можно сформулировать признаки делимости любых натуральных чисел. Выводы: Зная методы исследований признаков делимости натуральных чисел можно сформулировать признаки делимости любых натуральных чисел. Чем особенна и ценна теория чисел? Ведь найти непосредственное применение результатам трудно. Тем не менее, задачи теории чисел привлекают как пытливых молодых людей, так и ученых в течение многих столетий. В чем же здесь дело? Прежде всего, эти задачи очень интересны и красивы. Во все времена человека поражало, что на простые вопросы о числах так трудно найти ответ. Поиски этих ответов часто приводили к открытиям, значение которых далеко превосходит рамки теории чисел

№ слайда 15 Данное исследование будет полезным для учащихся при самостоятельной подготовке к
Описание слайда:

Данное исследование будет полезным для учащихся при самостоятельной подготовке к выпускным и вступительным экзаменам, т.к. последняя задача на ЕГЭ решается применением признаков делимости. А также будет полезно и для учеников, участвующих в олимпиадах. Они часто встречаются в заданиях олимпиад «Сократ», «Кенгуру», «Авангард». Применение признаков делимости чисел в изучении математики является эффективным. Знание их значительно ускоряет решение многих заданий. Предложенный материал «Признаки делимости чисел» можно использовать как на уроках математики, так и во внеклассных занятиях для учащихся 5-11-х классов. Данное исследование будет полезным для учащихся при самостоятельной подготовке к выпускным и вступительным экзаменам, т.к. последняя задача на ЕГЭ решается применением признаков делимости. А также будет полезно и для учеников, участвующих в олимпиадах. Они часто встречаются в заданиях олимпиад «Сократ», «Кенгуру», «Авангард». Применение признаков делимости чисел в изучении математики является эффективным. Знание их значительно ускоряет решение многих заданий. Предложенный материал «Признаки делимости чисел» можно использовать как на уроках математики, так и во внеклассных занятиях для учащихся 5-11-х классов.

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru