PPt4Web Хостинг презентаций

Главная / Алгебра / Предел функции
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Предел функции


Скачать эту презентацию

Презентация на тему: Предел функции


Скачать эту презентацию



№ слайда 1
Описание слайда:

№ слайда 2  Пусть функция f, принимающая действительные значения, определена в не
Описание слайда:

 Пусть функция f, принимающая действительные значения, определена в некоторой окрестности точки x0, кроме, быть может, самой точки x0.   Пусть функция f, принимающая действительные значения, определена в некоторой окрестности точки x0, кроме, быть может, самой точки x0.  Функция f имеет предел в точке x0,  если для любой последовательности точек xn, n = 1, 2,..., xn ≠ x0, стремящейся к точке x0,  последовательность значений функции f (xn) сходится к одному и тому же числу А,  которое и называется пределом функции f в точке x0, (или при x → x0) при этом пишется

№ слайда 3 Число А называется пределом функции f в точке x0, если
Описание слайда:

Число А называется пределом функции f в точке x0, если для любого числа ε > 0 существует такое число δ > 0, что для всех точек х ≠ x0, удовлетворяющих условию Число А называется пределом функции f в точке x0, если для любого числа ε > 0 существует такое число δ > 0, что для всех точек х ≠ x0, удовлетворяющих условию |х — x0| < δ, x ≠ x0, выполняется неравенство |f (x) — A| < ε.

№ слайда 4 Все основные элементарные функции: постоянные, степенная функция (хα),
Описание слайда:

Все основные элементарные функции: постоянные, степенная функция (хα),   показательная функция (ax), тригонометрические функции  (sinx, cosx, tgx и ctgx) и обратные тригонометрические функции  (arcsinx, arccosx, arctgx и arcctgx) во всех внутренних точках своих областей определения имеют пределы, совпадающие с их значениями в этих точках.  Все основные элементарные функции: постоянные, степенная функция (хα),   показательная функция (ax), тригонометрические функции  (sinx, cosx, tgx и ctgx) и обратные тригонометрические функции  (arcsinx, arccosx, arctgx и arcctgx) во всех внутренних точках своих областей определения имеют пределы, совпадающие с их значениями в этих точках. 

№ слайда 5
Описание слайда:

№ слайда 6
Описание слайда:

№ слайда 7
Описание слайда:

№ слайда 8
Описание слайда:

№ слайда 9
Описание слайда:

№ слайда 10 При нахождении предела иногда сталкиваются с неопределенностями вида При нахожде
Описание слайда:

При нахождении предела иногда сталкиваются с неопределенностями вида При нахождении предела иногда сталкиваются с неопределенностями вида Отыскание предела в таких случаях называется раскрытием неопределенности.

№ слайда 11
Описание слайда:

№ слайда 12
Описание слайда:

№ слайда 13
Описание слайда:

№ слайда 14
Описание слайда:

№ слайда 15
Описание слайда:

№ слайда 16 первый замечательный предел первый замечательный предел второй замечательный пре
Описание слайда:

первый замечательный предел первый замечательный предел второй замечательный предел

№ слайда 17
Описание слайда:

№ слайда 18 Число A1 называется пределом функции f (x) слева&n
Описание слайда:

Число A1 называется пределом функции f (x) слева в точке a, если для каждого ε > 0 существует δ > 0 такое, что для всех    выполняется неравенство   Число A1 называется пределом функции f (x) слева в точке a, если для каждого ε > 0 существует δ > 0 такое, что для всех    выполняется неравенство   При х приближающихся к а слева, значения функции стремятся к А1 

№ слайда 19 Число A2 называется пределом функции f (x) справа&
Описание слайда:

Число A2 называется пределом функции f (x) справа в точке a, если для каждого ε > 0 существует δ > 0 такое, что для всех    выполняется неравенство  Число A2 называется пределом функции f (x) справа в точке a, если для каждого ε > 0 существует δ > 0 такое, что для всех    выполняется неравенство  При х приближающихся к а справа, значения функции стремятся к А2 

№ слайда 20
Описание слайда:

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru