PPt4Web Хостинг презентаций

Главная / Алгебра / Правила дифференцирования
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Правила дифференцирования


Скачать эту презентацию

Презентация на тему: Правила дифференцирования


Скачать эту презентацию

№ слайда 1 Урок по алгебре и началам анализа (11 класс) Правила дифференцирования 900igr.ne
Описание слайда:

Урок по алгебре и началам анализа (11 класс) Правила дифференцирования 900igr.net

№ слайда 2 Правила дифференцирования Цель урока: закрепление знаний и обработка навыков выч
Описание слайда:

Правила дифференцирования Цель урока: закрепление знаний и обработка навыков вычисления производной функции; подготовить учащихся к предстоящей самостоятельной работе по данной теме ; воспитание нравственности и самостоятельности Метод урока: репродуктивный. Тип урока: урок повторения и обобщения полученных знаний

№ слайда 3 Правила дифференцирования План урока: Организационный момент Актуализация знаний
Описание слайда:

Правила дифференцирования План урока: Организационный момент Актуализация знаний учащихся Проверка домашнего задания Фронтальный опрос Решение задач (устно) Работа с учебником: Проверка знаний учащихся (тест: 2 варианта) Итоги урока. Домашнее задание.

№ слайда 4 Фронтальный опрос Вопросы: Что называется производной функции f(x) в точке x ? К
Описание слайда:

Фронтальный опрос Вопросы: Что называется производной функции f(x) в точке x ? Каким может быть число h в отношении ? Что значит функция дифференцируема в точке x ? Как называется операция нахождения производной ? Верно ли утверждение: “Функция дифференцируемая на промежутке - непрерывна на этом промежутке”, а обратное: “Функция непрерывная на промежутке - дифференцируема в каждой точке этого промежутка” ? Свойства производных?

№ слайда 5 Правила вычисления производных Производная от постоянной c’ = 0 Производная от с
Описание слайда:

Правила вычисления производных Производная от постоянной c’ = 0 Производная от степенной функции (x p)’ = px p-1 Производная от функции (kx+b) p ((kx+b) p)’ = pk(kx+b) p-1 Производная от суммы функций (f(x) + g(x))’ = f ’(x) + g’(x) Производная от функции cf(x) (cf(x))’ = cf ’(x) Производная от произведения (f(x)g(x))’ = f ’(x)g(x) + f(x)g’(x) Производная от частного

№ слайда 6 Найдите производную функции(устно) x7 x -3 x -2 x 1/4 x 1/3 x -2/7 (3x-2)4 (4x+5
Описание слайда:

Найдите производную функции(устно) x7 x -3 x -2 x 1/4 x 1/3 x -2/7 (3x-2)4 (4x+5)6 (4x)3 (1/3x)3 (7-3x) -5 (6-4x) -3 (3x-5) -6 ( x -1)-2/7 (-2/5x+1) -2/7

№ слайда 7 Работа с учебником №№820(1); 821(3); 825(1,3); 828
Описание слайда:

Работа с учебником №№820(1); 821(3); 825(1,3); 828

№ слайда 8 Тестовая работа на компьютере: 2 варианта. Обозначения математических знаков : з
Описание слайда:

Тестовая работа на компьютере: 2 варианта. Обозначения математических знаков : знак умножения - * деления (и дроби) - / степени - ^ Проверь себя !!! Если у вас вариант I, то щелкните на эту кнопку: Если у вас вариант II, то щелкните на эту кнопку: I II

№ слайда 9 Итоги урока анализ ответов; оценка результатов работы; анализ ошибок, допущенных
Описание слайда:

Итоги урока анализ ответов; оценка результатов работы; анализ ошибок, допущенных при выполнении тестовой работы

№ слайда 10 Домашнее задание: п.46, повторить п.п.44-45, №№821(2); 829. 830
Описание слайда:

Домашнее задание: п.46, повторить п.п.44-45, №№821(2); 829. 830

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru