PPt4Web Хостинг презентаций

Главная / Обществознания / Тайны паркетов
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Тайны паркетов


Скачать эту презентацию

Презентация на тему: Тайны паркетов


Скачать эту презентацию

№ слайда 1 Тайны паркетов МОУ Октябрьская средняя общеобразовательная школа Радищевского ра
Описание слайда:

Тайны паркетов МОУ Октябрьская средняя общеобразовательная школа Радищевского района Ульяновской области Выполнил ученик 8 класса Волик ПавелРуководительВолик Т.Г., учитель математики

№ слайда 2 Почему мне это интересно? В начале этого учебного года в курсе геометрии мы знак
Описание слайда:

Почему мне это интересно? В начале этого учебного года в курсе геометрии мы знакомились с темой «Выпуклые многоугольники». Когда был рассмотрен вопрос о сумме углов выпуклого многоугольника и разобран ряд задач, учитель рассказал нам о том, что эта тема имеет практическое применение и связана с покрытием плоскости паркетами разных видов. Подробно на этом мы не остановились, но этот вопрос меня очень заинтересовал.

№ слайда 3 Я решил узнать: Что такое паркет? Какие бывают виды паркетов? Как проверить собс
Описание слайда:

Я решил узнать: Что такое паркет? Какие бывают виды паркетов? Как проверить собственную гипотезу? Какова история паркета? Какими фигурами можно покрыть плоскость? Только ли ученые-математики занимаются этой темой?

№ слайда 4 Я выдвинул гипотезу: паркеты можно составлять только из правильных многоугольник
Описание слайда:

Я выдвинул гипотезу: паркеты можно составлять только из правильных многоугольников и этих паркетов - конечное множество. Цель данного проекта: исследовать вопрос о покрытии плоскости многоугольниками.

№ слайда 5 Для достижения цели я поставил перед собой следующие задачи: 1) найти источники
Описание слайда:

Для достижения цели я поставил перед собой следующие задачи: 1) найти источники дополнительной информации -о истории возникновения паркетов; -о видах паркетов;-о многоугольниках, с помощью которых можно составить паркет;2) провести исследование, выясняющее, насколько верна выдвинутая мной гипотеза;3) проанализировать, обобщить и систематизировать полученные данные;4) подобрать иллюстрации и оформить презентацию «Тайны паркетов»;5) ознакомить с результатами проекта учащихся 7-9 классов на уроках геометрии.

№ слайда 6 Паркет (франц. parquet)- небольшие древесные, строганные планки для покрытия пол
Описание слайда:

Паркет (франц. parquet)- небольшие древесные, строганные планки для покрытия пола. С XVI в. известен в России. Паркет изготавливают преимущественно из твердых пород дерева, для художественного паркета используют ценные породы.Паркет – это настил на полу из дощечек, уложенный так, что они образуют какой-нибудь рисунок (словарь С.И.Ожегова);Паркет – это такое покрытие плоскости правильными многоугольниками, при котором два многоугольника имеют либо общую сторону, либо общую вершину или совсем не имеют общих точек («Энциклопедический словарь юного математика»);Паркет - бесконечное семейство многоугольников, покрывающее плоскость без просветов и двойных покрытий.

№ слайда 7 Паркеты из правильных многоугольников Паркет называется правильным, если он сост
Описание слайда:

Паркеты из правильных многоугольников Паркет называется правильным, если он составлен из равных правильных многоугольников и вокруг каждой вершины правильные многоугольники расположены одним и тем же способом.Если при составлении паркета использовать несколько правильных многоугольников с различным числом сторон, то такой паркет называется полуправильным.

№ слайда 8 В вершине паркета может сходиться не более шести и не менее трех многоугольников
Описание слайда:

В вершине паркета может сходиться не более шести и не менее трех многоугольников. Действительно, при схождении в одной вершине семи или более многоугольников хотя бы один угол в правильном многоугольнике должен быть менее 60°, что невозможно (минимальный угол — у треугольника — равен 60°). При схождении в одной вершине двух многоугольников у одного из них внутренний угол должен быть более 180°, что, очевидно, также невозможно. Таким образом, решение задачи распадается на анализ тех вариантов, когда в вершине паркета сходятся 3, 4, 5 и 6 правильных многоугольников.

№ слайда 9 Паркеты с тремя правильными многоугольниками в вершине Двенадцатиуголь-ник , ква
Описание слайда:

Паркеты с тремя правильными многоугольниками в вершине Двенадцатиуголь-ник , квадрат и шестиугольник 2 восьмиугольника и 1 квадрат 2 двенадцатиугольника и треугольник

№ слайда 10 Паркеты с четырьмя правильными многоугольниками в вершине 4 квадрата Шестиугольн
Описание слайда:

Паркеты с четырьмя правильными многоугольниками в вершине 4 квадрата Шестиугольник, треугольник и 2 квадрата 2 шестиугольника и 2 треугольника

№ слайда 11 Паркеты с пятью правильными многоугольниками в вершине 2 квадрата и 3 треугольни
Описание слайда:

Паркеты с пятью правильными многоугольниками в вершине 2 квадрата и 3 треугольника Шестиугольник и 4 треугольника 2 квадрата и три треугольника

№ слайда 12 Паркеты с шестью правильными многоугольниками в вершине 6 треугольников
Описание слайда:

Паркеты с шестью правильными многоугольниками в вершине 6 треугольников

№ слайда 13 Паркеты из неправильных многоугольников Возьмем произвольный четырех-угольник AB
Описание слайда:

Паркеты из неправильных многоугольников Возьмем произвольный четырех-угольник ABCD (I) и построим симметричный ему относительно середины стороны АВ четырех-угольник(II). Четырехугольник II отразим симметрично относительно середины его стороны ВС (III ). Отразим его симметрично относи-тельно середины стороны CD (IV). Четырехугольники I,II,III,IV примы-кают к общей вершине углами A,B,C,D, которые в сумме дают 360 градусов, поэтому четырехугольники заполнят плоскость вокруг общей вершины.

№ слайда 14 Паркеты из неправильных многоугольников Вообще можно покрыть плоскость копиями п
Описание слайда:

Паркеты из неправильных многоугольников Вообще можно покрыть плоскость копиями произвольного многоугольника, необязательно выпуклого:

№ слайда 15 Паркеты из произвольных фигур появляется множество разнообразных паркетов, состо
Описание слайда:

Паркеты из произвольных фигур появляется множество разнообразных паркетов, состоящих не из многоугольников, а из криволинейных фигур

№ слайда 16 Паркеты из произвольных фигур Всемирная известность пришла к Эшеру в 1951 году.
Описание слайда:

Паркеты из произвольных фигур Всемирная известность пришла к Эшеру в 1951 году. В 1954 году в Амстердаме состоялась большая выставка Эшера, приуроченная к Международному математическому конгрессу. Математики сразу признали художника «своим»; с этого времени его рисунки – неизменный атрибут физико-математических изданий. Знаменитый голландский художник Мариус Эшер (1898-1972).

№ слайда 17 Наиболее интересными для изучения идеями Эшера являются всевозможные разбиения п
Описание слайда:

Наиболее интересными для изучения идеями Эшера являются всевозможные разбиения плоскости. Регулярное разбиение плоскости, называемое «мозаикой», - это набор замкнутых фигур, которыми можно замостить плоскость без пересечений фигур и щелей между ними. Эшер интересовался всеми видами мозаик, а также ввел собственный вид, который назвал «метаморфозами», где фигуры изменяются и взаимодействуют друг с другом.

№ слайда 18 Мариус Эшер посвятил орнаментам несколько своих картин. Среди них: «Всадники», «
Описание слайда:

Мариус Эшер посвятил орнаментам несколько своих картин. Среди них: «Всадники», «Летящие птицы»; «Ящерицы».

№ слайда 19 Способы построения паркетов Способ первый. Берем некоторую уже известный нам пар
Описание слайда:

Способы построения паркетов Способ первый. Берем некоторую уже известный нам паркет и выполняем преобразования: сжатие или растяжение, замена прямолинейных отрезков кривыми с началом и концом в тех же точках, что и у отрезков...Пример: паркеты, полученные заменой отрезков "квадратной" сетки некоторыми кривыми или ломаными. 

№ слайда 20 Способы построения паркетов Способ второй. Объединяем отдельные элементы уже сущ
Описание слайда:

Способы построения паркетов Способ второй. Объединяем отдельные элементы уже существующих паркетов. Примеры: паркеты, полученные в результате объединения элементов квадратной сетки.

№ слайда 21 Способы построения паркетов Способ третий. Берем существующую сетку и дополняем
Описание слайда:

Способы построения паркетов Способ третий. Берем существующую сетку и дополняем ее новыми линиями. Получаем разбиение плоскости на фигуры, которые затем можно по-новому объединить.

№ слайда 22 Способы построения паркетов Способ четвертый. Выбираем некоторую кривую или лома
Описание слайда:

Способы построения паркетов Способ четвертый. Выбираем некоторую кривую или ломаную и начинаем ее переносить, поворачивать, отражать... получившиеся кривые или ломаные размещаем на плоскости таким образом, чтобы они образовали замкнутые контуры (которые в дальнейшем будут рассматриваться как элементы паркета).

№ слайда 23 Подводя итоги... Мне удалось: - выяснить, что такое паркет с точки зрения матема
Описание слайда:

Подводя итоги... Мне удалось: - выяснить, что такое паркет с точки зрения математики;- узнать много нового и интересного об истории возникновения паркетов;- найти в литературе и в Интернете сведения о том, какие виды паркетов существуют;провести собственное исследование вопроса о построении паркетов и убедиться в том, что паркетов из правильных многоугольников – конечное число, а именно 11, а также опровергнуть гипотезу о том, что паркеты можно составить только из правильных многоугольников; подобрать иллюстрации и оформить с помощью руководителя и презентацию «Тайны паркетов»;- ознакомить с результатами проекта учащихся 7-9 классов.

№ слайда 24 Мой адрес: Ульяновская обл.,Радищевский р-н,п. Октябрьский, ул. Мира, д. 30, кв.
Описание слайда:

Мой адрес: Ульяновская обл.,Радищевский р-н,п. Октябрьский, ул. Мира, д. 30, кв. 7. Спасибо за внимание!!!

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru