Урок – исследование Мастер – класс Учитель математики Ильясова Н. Ш.МБОУ СОШ №14 с углубленным изучением отдельных предметов Г. Балахна 2012
"Модернизация и инновационное развитие - единственный путь, который позволит России стать конкурентным обществом в мире 21-го века, обеспечить достойную жизнь всем нашим гражданам. В условиях решения этих стратегических задач важнейшими качествами личности становятся инициативность, способность творчески мыслить и находить нестандартные решения, умение выбирать профессиональный путь, готовность обучаться в течение всей жизни. Все эти навыки формируются с детства.»(Национальная образовательная инициатива «Наша новая школа»)Д. А. Медведев
Гипотеза? Факт.Гипотеза – математику все будут знать, если их заинтересовать.Д о к а ж е м ?
Структура проблемного урокаСтруктурными элементами проблемного урока являются:•актуализация прежних знаний и способов действий;•усвоение новых знаний и способов действий;•формирование умений и навыков.Эта структура отражает основные этапы учения и этапы организации современного урока. Поскольку показателем проблемного урока является наличие в его структуре этапов поисковой, исследовательской деятельности, то естественно, что они и представляют внутреннюю часть структуры проблемного урока:•выдвижение предположений и обоснование гипотезы;•доказательство гипотезы;•проверка правильности решения проблемы.
Этапы урока - исследованияУстановление объекта изучения (мотивация).Постановка и формирование проблемы. Определение предмета исследования.Определение цели и задач исследования. Выдвижение гипотезы.Построение плана исследования (выбор методов и процедур).Проверка гипотезы, проведение эксперимента.Оформление результатов исследования.Определение сферы применения найденного решения.Анализ и обобщение полученных результатов, Выводы и обмен информацией.
1) Мотивация – очень важный этап процесса обучения, если мы хотим, чтобы оно было творческим. Целью мотивации, как этапа урока, является создание условий для возникновения у ученика вопроса или проблемы. Одним из способов осуществления мотивации может служить исходная (мотивирующая задача), которая должна обеспечить «видение» учащимися более общей проблемы, нежели та, которая отражена в условии задачи. 2) Этап формулирования проблемы – самый тонкий и «творческий» компонент мыслительного процесса. В идеале сформулировать проблему должен сам ученик в результате решения мотивирующей задачи. Однако в реальной школьной практике такое случается далеко не всегда: для очень многих школьников самостоятельное определение проблемы затруднено; предлагаемые ими формулировки могут оказаться неправильными. А поэтому необходим контроль со стороны учителя.
3) Сбор фактического материала может осуществляться при изучении соответствующей учебной или специальной литературы либо посредством проведения испытаний, всевозможных проб, измерения частей фигуры, каких-либо параметров и т.д. Пробы (испытания) не должны быть хаотичными, лишенными какой-либо логики. Необходимо задать их направление посредством пояснений, чертежей и т.п. Число испытаний должно быть достаточным для получения необходимого фактического материала. 4) Систематизацию и анализ полученного материала удобно осуществлять с помощью таблиц, схем, графиков и т.п. – они позволяют визуально определить необходимые связи, свойства, соотношения, закономерности. 5) Выдвижение гипотез. Полезно прививать учащимся стремление записывать гипотезы на математическом языке, что придает высказываниям точность и лаконичность. Не нужно ограничивать число предлагаемых учащимися гипотез.
6) Проверка гипотез позволяет укрепить веру или усомниться в истинности предложений, а может внести изменения в их формулировки. Чаще всего проверку гипотез целесообразно осуществлять посредством проведения еще одного испытания. При этом результат новой пробы сопоставляется с ранее полученным результатом. Если результаты совпадают, то гипотеза подтверждается, и вероятность ее истинности возрастает. Расхождение же результатов служит основанием для отклонения гипотезы или уточнения условий ее справедливости. 7) На последнем этапе происходит доказательство истинности гипотез, получивших ранее подтверждение; ложность же их может быть определена с помощью контр примеров. Поиск необходимых доказательств часто представляет большую трудность, поэтому учителю важно предусмотреть всевозможные подсказки.
Особенности технологии урока- исследования
Какие вопросы могут помочь в исследовании? При решении исследовательских задач у учащихся часто возникают затруднения, поэтому учителю следует задавать наталкивающие вопросы. Уметь задавать вопросы – одно из важнейших умений учителя, так как умело заданный вопрос обеспечивает правильный и конкретный ответ учащихся. По характеру ответов вопросы могут быть:репродуктивные (воспроизведение знаний; например, перечислить компоненты процесса обучения);реконструктивные (требующие применения знаний в нестандартной ситуации: например, чем отличаются …, какова основная мысль…);творческие (требующие осмысления и творческого подхода).Для активизации мыслительной деятельности, для самостоятельного поиска ответа помогают конструкции-подсказки, например: почему…; какова причина…; в чем суть явления…; что изменилось бы, если…; чем отличается… и т.д.
Фрагмент урока
При решении возникает проблема влияния параметра на наличие решений. Учащиеся, уже имеющие опыт решения уравнений и неравенств с параметрами, предполагают, т. е. выдвигают гипотезу о том, что «Параметр всегда влияет на наличие решений в уравнениях и неравенствах с параметрами» Решить относительно х уравнение . Сделайте вывод о влиянии параметра на наличие решений в заданном уравненииРешение. а) ОДЗ: х ≥ а б) то есть при любом а корнем является х = а; при а ≤ – 6 корнем является х = – 6.Ответ: при любом а корнем является х = а; при а ≤ – 6 корнем является х = – 6.Вывод: параметр не влияет на наличие решений заданного уравнения.
Решить относительно х неравенство ≤ 0. Сделайте вывод о влиянии параметра на наличие решений в заданном неравенстве.Решение. а) ОДЗ: х ≥ – 3 б) при х ≥ – 3 неравенство выполняется тогда и только тогда, когда х – а ≤ 0, то есть х ≤ а, значит при а = – 3 решением неравенства будет х = – 3, при а < – 3 неравенство не имеет решений, при а > – 3 решением будет любое значение х из промежутка [– 3; а].Ответ: при а = – 3 решение неравенства х = – 3, при а < – 3 неравенство не имеет решений, при а > – 3 решением будет любое значение х из промежутка [– 3; а]. Вывод: параметр влияет на наличие решений заданного неравенства.Общий вывод по результатам проверки гипотезы:Проверка гипотезы показала, что параметр не всегда влияет на наличие решений уравнения или неравенства, значит, гипотеза неверна. То есть вопрос о взаимосвязи параметра и наличия решений в уравнении или неравенстве не имеет однозначного ответа и решается индивидуально для каждого из заданий с параметром.
Синту – пятистрочное японское стихотворениеНазвание мастер – классаОсновная мысльЧувства, которые вы испыталиЧто нового узналиПожелания
Использованные Сайты. ссылки, использованных рисунковhttp://polyakova.ucoz.ruhttp://shool-2-orsk.ucoz.ru/news/3http://www.ow3.ru/http://www.haberler.com/100-yillik-problemi-cozdu-haberi/http://www.goleeyupsabriclisesi.com/index.php?option=com_content&task=view&id=213&Itemid=205http://900igr.net/kartinki/matematika/Uroki-matematiki-v-shkole/014-KHod-issledovanija.html http://artgrafica.net/2011/03/08/signs-design.htmlhttp://www.diets.ru/post/21867/http://pedagog.profi.org.ua/uk/node/3399http://young.rzd.ru/isvp/public/young?STRUCTURE_ID=5043&layer_id=3833&refererLayerId=3832&id=35284http://gmn57.ucoz.ru/publ/dlja_uchitelej/vospitanie/organizacija_issledovatelskoj_dejatelnosti/4-1-0-15