Переменная величина у называется функцией от переменной величины х (аргумента), если каждому допустимому значению х соответствует определенное, единственное значение у. Переменная величина у называется функцией от переменной величины х (аргумента), если каждому допустимому значению х соответствует определенное, единственное значение у.
область определения функции область определения функции область значений функции четность функции возрастание (убывает) функции наибольшее и наименьшее значения функции ограниченность снизу (сверху)
Логарифмом положительного числа b по основанию а, где а>0, а≠1, называется показатель степени, в которую надо возвести а, чтобы получить b. Логарифмом положительного числа b по основанию а, где а>0, а≠1, называется показатель степени, в которую надо возвести а, чтобы получить b.
1 вариант. 1 вариант. 2 вариант.
Ответы:1 вариант: -2;-1;0;1;2;3; нет. Ответы:1 вариант: -2;-1;0;1;2;3; нет. Ответы:2 вариант: 2;1;0;-1;-2;-3; нет.
Итак, мы повторили необходимый материал. С какими трудностями вы встретились при выполнении самостоятельной работы?
Вернемся к заданиям самостоятельной работы на повторение понятия логарифма. Вернемся к заданиям самостоятельной работы на повторение понятия логарифма. Задание. Обозначьте изменяющуюся величину через x. При этом значение логарифма тоже будет изменяться. Обозначьте его через y и задайте формулой полученную зависимость y от x. Итак, ребята, что у вас получилось?
и
Цели урока. Ввести понятие логарифмической функции, дать определение. Изучить основные свойства логарифмической функции. Сформировать умение выполнять построение графика логарифмической функции.
Постройте графики функций по вариантам используя результаты самостоятельной работы I вариант II вариант
Проверка: Сформулируйте свойства логарифмической функции
область определения - множество всех положительных чисел (х>0). область определения - множество всех положительных чисел (х>0). область значений - множество всех действительных чисел ( - ∞; +∞). непрерывна на всей области определения. функция возрастает на всей области определения, если а>1. функция убывает на всей области определения, если 0< а>1. точка пересечения графика функции с осью Ох (1,0). наибольшего и наименьшего значения функции не существует. положение точки а относительно1, и значения функции при х=а
Стр 243, № 69 Стр 243, № 69 Объясните, как при сравнении значений логарифмов, вы будете использовать свойство возрастания (убывания) функции.
№ 70, log 0,5 4,5 … 0 log 3 0,45 ... 0 log 5 25,3 … 0 log 5 25,3 … 0 log 0,5 4,5 > 0 log 3 0,45 < 0 log 5 25,3 > 0 log 5 25,3 < 0
№ 75, № 75, № 80. №83 (1,3)
В математике встречаются немного экзотические графики. Одним из них является логарифмическая спираль. В математике встречаются немного экзотические графики. Одним из них является логарифмическая спираль.
В математике встречаются немного экзотические графики. Одним из них является логарифмическая спираль. Спираль имеет бесконечное множество витков и при раскручивании, и при скручивании. Логарифмическую спираль называют еще равноугольной спиралью. Это ее название отражает тот факт, что в любой точке логарифмической спирали угол между касательной к ней и радиус-вектором сохраняет постоянное значение.
Логарифмическая спираль описывается уравнением r=aф, где r – расстояние от точки, вокруг которой закручивается спираль (ее называют полюсом), до произвольной точки на спирали, ф – угол поворота относительно полюса, а – постоянная. Логарифмическая спираль описывается уравнением r=aф, где r – расстояние от точки, вокруг которой закручивается спираль (ее называют полюсом), до произвольной точки на спирали, ф – угол поворота относительно полюса, а – постоянная. Спираль называется логарифмической, т.к. логарифм расстояния (logar) возрастает пропорционально углу поворота ф.
Произвольный луч, выходящий из полюса спирали, пересекает любой виток спирали под одним и тем же углом. Произвольный луч, выходящий из полюса спирали, пересекает любой виток спирали под одним и тем же углом. Логарифмическая спираль не изменяет своей природы при многих преобразованиях, к которым чувствительны другие кривые. Сжать или растянуть эту спираль – то же самое, что повернуть ее на определенный угол.
Если вращать спираль вокруг полюса по часовой стрелке, то можно наблюдать кажущееся растяжение спирали. Если вращать спираль вокруг полюса по часовой стрелке, то можно наблюдать кажущееся растяжение спирали.
Живые существа обычно растут, сохраняя общее очертание своей формы. При этом они растут чаще всего во всех направлениях - взрослое существо и выше и толще детеныша. Но раковины морских животных могут расти лишь в одном направлении. Чтобы не слишком вытягиваться в длину, им приходится скручиваться, причем каждый следующий виток подобен предыдущему. А такой рост может совершаться лишь по логарифмической спирали или ее некоторым пространственным аналогам. Поэтому раковины многих моллюсков, улиток, а также рога таких млекопитающих, как архары, закручены по логарифмической спирали. Живые существа обычно растут, сохраняя общее очертание своей формы. При этом они растут чаще всего во всех направлениях - взрослое существо и выше и толще детеныша. Но раковины морских животных могут расти лишь в одном направлении. Чтобы не слишком вытягиваться в длину, им приходится скручиваться, причем каждый следующий виток подобен предыдущему. А такой рост может совершаться лишь по логарифмической спирали или ее некоторым пространственным аналогам. Поэтому раковины многих моллюсков, улиток, а также рога таких млекопитающих, как архары, закручены по логарифмической спирали.
Можно сказать, что эта спираль является математическим символом соотношения форм роста. Великий немецкий поэт Иоганн Вольфганг Гете считал ее даже математическим символом жизни и духовного развития. Очертания, выраженные логарифмической спиралью, имеют не только раковины, в подсолнухе семечки расположены по дугам, также близким к логарифмической спирали. Можно сказать, что эта спираль является математическим символом соотношения форм роста. Великий немецкий поэт Иоганн Вольфганг Гете считал ее даже математическим символом жизни и духовного развития. Очертания, выраженные логарифмической спиралью, имеют не только раковины, в подсолнухе семечки расположены по дугам, также близким к логарифмической спирали.
По логарифмическим спиралям закручены и многие Галактики, в частности, Галактика, которой принадлежит Солнечная система.