PPt4Web Хостинг презентаций

Главная / Математика / Числовые функции
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Числовые функции


Скачать эту презентацию

Презентация на тему: Числовые функции


Скачать эту презентацию



№ слайда 1 Числовые функции 9 класс В реальной жизни мы говорим: «каковы мои функции» или «
Описание слайда:

Числовые функции 9 класс В реальной жизни мы говорим: «каковы мои функции» или «каковы мои функциональные обязанности», подразумевая «каков круг моих действий» или «что я должен сделать, как действовать». В реальной жизни слово «функция» означает «действие» или «правила действий». Тот же смысл имеет и математический термин «функция»

№ слайда 2 Определение числовой функции Определение 1. Если дано правило f, позволяющее пос
Описание слайда:

Определение числовой функции Определение 1. Если дано правило f, позволяющее поставить в соответствие каждому элементу x из числового множества Х определенное число y, то говорят, что задана функция y=f(x), х из Х х - независимая переменная или аргумент функции, у - зависимая переменная или значение функции

№ слайда 3 Область определения функции Определение 2. Множество всех значений аргумента х н
Описание слайда:

Область определения функции Определение 2. Множество всех значений аргумента х называют областью определения функции и обозначают D(f) или D(y).

№ слайда 4 Область значений функции Определение 3. Множество всех значений функции у называ
Описание слайда:

Область значений функции Определение 3. Множество всех значений функции у называют областью значений функции и обозначают E(y) или E(f).

№ слайда 5 Свойства функций Определение 4. Функцию y=f(x) называют возрастающей на множеств
Описание слайда:

Свойства функций Определение 4. Функцию y=f(x) называют возрастающей на множестве Х c D(f), если для любых двух точек х₁ и х₂ множества Х, таких, что х₁<х₂ выполняется неравенство f(х₁) < f(х₂).

№ слайда 6 Монотонность Определение 5. Функцию y=f(x) называют убывающей на множестве Х c D
Описание слайда:

Монотонность Определение 5. Функцию y=f(x) называют убывающей на множестве Х c D(f), если для любых двух точек х₁ и х₂ множества Х, таких, что х₁<х₂ выполняется неравенство f(х₁) > f(х₂).

№ слайда 7 Правила 1. Функция возрастает, если большему значению аргумента соответствует бо
Описание слайда:

Правила 1. Функция возрастает, если большему значению аргумента соответствует большее значение функции. 2. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.

№ слайда 8 Ограниченность Определение 6. Функцию y=f(x) называют ограниченной снизу на множ
Описание слайда:

Ограниченность Определение 6. Функцию y=f(x) называют ограниченной снизу на множестве Х c D(f), если все значения функции у на множестве Х больше некоторого числа m : f(x) &gt; m. Определение 7. Функцию y=f(x) называют ограниченной сверху на множестве Х c D(f), если все значения функции у на множестве Х меньше некоторого числа m : f(x) &lt; m. Если функция ограничена и сверху и снизу, то её называют ограниченной.

№ слайда 9 Пример Данная функция у=f(x) ограничена снизу, поэтому её график целиком располо
Описание слайда:

Пример Данная функция у=f(x) ограничена снизу, поэтому её график целиком расположен выше некоторой горизонтальной прямой например, у=-6. Функция имеет наименьшее значение у=-4, наибольшего значения не существует.

№ слайда 10 Четные и нечетные функции ( четность и нечетность) Определение 8. Функцию y = f(
Описание слайда:

Четные и нечетные функции ( четность и нечетность) Определение 8. Функцию y = f(x), х с Х, называют четной, если для любого значения х из множества Х выполняется равенство f(-x) = f(x)

№ слайда 11 Определение 9. Функцию y = f(x), х с Х, называют нечетной, если для любого значе
Описание слайда:

Определение 9. Функцию y = f(x), х с Х, называют нечетной, если для любого значения х из множества Х выполняется равенство f(-x) = -f(x) График нечетной функции симметричен относительно начала координат. Если функция y = f(x) – четная или нечетная, то её область определения D(f) – симметричное множество

№ слайда 12 Спасибо за сотрудничество!
Описание слайда:

Спасибо за сотрудничество!

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru