PPt4Web Хостинг презентаций

Главная / Геометрия / Задачи на подобие треугольников
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Задачи на подобие треугольников


Скачать эту презентацию

Презентация на тему: Задачи на подобие треугольников


Скачать эту презентацию



№ слайда 1 Подобие треугольников Два треугольника называются подобными, если углы одного со
Описание слайда:

Подобие треугольников Два треугольника называются подобными, если углы одного соответственно равны углам другого и соответствующие стороны пропорциональны. Коэффициент пропорциональности называется коэффициентом подобия. Таким образом, треугольник АВС подобен треугольнику A1В1С1, если A = A1, B = B1, C = C1 и где k – коэффициент подобия. 900igr.net

№ слайда 2 Первый признак подобия Теорема. (Первый признак подобия.) Если два угла одного т
Описание слайда:

Первый признак подобия Теорема. (Первый признак подобия.) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

№ слайда 3 Вопрос 1 Какие треугольники называются подобными? Ответ: Два треугольника называ
Описание слайда:

Вопрос 1 Какие треугольники называются подобными? Ответ: Два треугольника называются подобными, если углы одного соответственно равны углам другого и соответствующие стороны пропорциональны.

№ слайда 4 Вопрос 2 Сформулируйте первый признак подобия треугольников. Ответ: Если два угл
Описание слайда:

Вопрос 2 Сформулируйте первый признак подобия треугольников. Ответ: Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

№ слайда 5 Вопрос 3 Подобны ли любые два: а) равносторонних треугольника; б) равнобедренных
Описание слайда:

Вопрос 3 Подобны ли любые два: а) равносторонних треугольника; б) равнобедренных треугольника; в) равнобедренных прямоугольных треугольника? Ответ: а) Да; б) нет; в) да.

№ слайда 6 Упражнение 1 Выясните, подобны ли треугольники, изображенные на рисунке? Ответ:
Описание слайда:

Упражнение 1 Выясните, подобны ли треугольники, изображенные на рисунке? Ответ: Да.

№ слайда 7 Упражнение 2 Выясните, подобны ли треугольники, изображенные на рисунке? Ответ:
Описание слайда:

Упражнение 2 Выясните, подобны ли треугольники, изображенные на рисунке? Ответ: Да.

№ слайда 8 Упражнение 3 Изобразите треугольник A’B’C’, подобный данному треугольнику ABC, с
Описание слайда:

Упражнение 3 Изобразите треугольник A’B’C’, подобный данному треугольнику ABC, с коэффициентом подобия 2.

№ слайда 9 Упражнение 4 Изобразите треугольник A’B’C’, подобный данному треугольнику ABC, с
Описание слайда:

Упражнение 4 Изобразите треугольник A’B’C’, подобный данному треугольнику ABC, с коэффициентом подобия 0,5.

№ слайда 10 Упражнение 5 Стороны треугольника равны 5 см, 8 см и 10 см. Найдите стороны подо
Описание слайда:

Упражнение 5 Стороны треугольника равны 5 см, 8 см и 10 см. Найдите стороны подобного ему треугольника, если коэффициент подобия равен: а) 0,5; б) 2. Ответ: а) 2,5 см, 4 см и 5 см; б) 10 см, 16 см и 20 см.

№ слайда 11 Упражнение 6 Подобны ли прямоугольные треугольники, если у одного из них есть уг
Описание слайда:

Упражнение 6 Подобны ли прямоугольные треугольники, если у одного из них есть угол 40о, а у другого 50о? Ответ: Да.

№ слайда 12 Упражнение 7 Два треугольника подобны. Два угла одного треугольника равны 55о и
Описание слайда:

Упражнение 7 Два треугольника подобны. Два угла одного треугольника равны 55о и 80о. Найдите наименьший угол второго треугольника. Ответ: 45о.

№ слайда 13 Упражнение 8 В подобных треугольниках АВС и А1В1С1 АВ = 8 см, ВС = 10 см, А1В1 =
Описание слайда:

Упражнение 8 В подобных треугольниках АВС и А1В1С1 АВ = 8 см, ВС = 10 см, А1В1 = 5,6 см, А1С1 = 10,5 см. Найдите АС и В1С1. Ответ: AC = 15 см, B1C1 = 7 см.

№ слайда 14 Упражнение 9 Ответ: AC = 4 м, B1C1 = 14 м. У треугольников АВС и А1В1С1 A = A1,
Описание слайда:

Упражнение 9 Ответ: AC = 4 м, B1C1 = 14 м. У треугольников АВС и А1В1С1 A = A1, B = B1, АВ = 5 м, ВС = 7 м, А1В1 = 10 м, А1С1 = 8 м. Найдите остальные стороны треугольников.

№ слайда 15 Упражнение 10 Стороны треугольника относятся как 5:3:7. Найдите стороны подобног
Описание слайда:

Упражнение 10 Стороны треугольника относятся как 5:3:7. Найдите стороны подобного ему треугольника, у которого: а) периметр равен 45 см; б) меньшая сторона равна 5 см; в) большая сторона равна 7 см; г) разность большей и меньшей сторон составляет 2 см. Ответ: а) 15 см, 9 см, 21 см; в) 5 см, 3 см, 7 см; г) 2,5 см, 1,5 см, 3,5 см.

№ слайда 16 Упражнение 11 На рисунке укажите все подобные треугольники. Ответ: а) ABC, FEC,
Описание слайда:

Упражнение 11 На рисунке укажите все подобные треугольники. Ответ: а) ABC, FEC, DBE; б) ABC, GFC, AGD, FBE; в) ABC, CDA, AEB, BEC; г) AOB, COD; д) ABC и FGC; ADC и FEC; DBC и EGC.

№ слайда 17 Упражнение 12 У двух равнобедренных треугольников углы между боковыми сторонами
Описание слайда:

Упражнение 12 У двух равнобедренных треугольников углы между боковыми сторонами равны. Боковая сторона и основание одного треугольника равны соответственно 17 см и 10 см, основание другого равно 8 см. Найдите его боковую сторону. Ответ: 13,6 см.

№ слайда 18 Упражнение 13 В треугольник со стороной а и высотой h, опущенной на нее, вписан
Описание слайда:

Упражнение 13 В треугольник со стороной а и высотой h, опущенной на нее, вписан квадрат так, что две его вершины лежат на этой стороне треугольника, а другие две – на двух других сторонах треугольника. Найдите сторону квадрата.

№ слайда 19 Упражнение 14 В треугольник АВС вписан ромб ADEF так, что угол А у них общий, а
Описание слайда:

Упражнение 14 В треугольник АВС вписан ромб ADEF так, что угол А у них общий, а вершина Е находится на стороне ВС. Найдите сторону ромба, если АВ = с и АС = b.

№ слайда 20 Упражнение 15 Можно ли треугольник пересечь прямой, непараллельной основанию, та
Описание слайда:

Упражнение 15 Можно ли треугольник пересечь прямой, непараллельной основанию, так, чтобы отсечь от него подобный треугольник? В каком случае это невозможно? Ответ: Можно, если треугольник неравносторонний.

№ слайда 21 Упражнение 16 Пусть AC и BD – хорды окружности, пересекающиеся в точке E. Докажи
Описание слайда:

Упражнение 16 Пусть AC и BD – хорды окружности, пересекающиеся в точке E. Докажите, что треугольники ABE и CDE подобны.

№ слайда 22 Упражнение 17 На рисунке AE = 3, BE = 6, CE = 2. Найдите DE. Ответ: 4.
Описание слайда:

Упражнение 17 На рисунке AE = 3, BE = 6, CE = 2. Найдите DE. Ответ: 4.

№ слайда 23 Упражнение 18 На рисунке AB = 8, BE = 6, DE = 4. Найдите CD.
Описание слайда:

Упражнение 18 На рисунке AB = 8, BE = 6, DE = 4. Найдите CD.

№ слайда 24 Упражнение 19 На рисунке CE = 2, DE = 5, AE = 4. Найдите BE. Ответ: 10.
Описание слайда:

Упражнение 19 На рисунке CE = 2, DE = 5, AE = 4. Найдите BE. Ответ: 10.

№ слайда 25 Упражнение 20 На рисунке CE = 4, CD = 10, AE = 6. Найдите AB. Ответ: 15.
Описание слайда:

Упражнение 20 На рисунке CE = 4, CD = 10, AE = 6. Найдите AB. Ответ: 15.

№ слайда 26 Упражнение 21 Ответ: DEK и DLF, DEK и ELK, DLF и ELK, DFK и DLE, DFK и FLK, DLE
Описание слайда:

Упражнение 21 Ответ: DEK и DLF, DEK и ELK, DLF и ELK, DFK и DLE, DFK и FLK, DLE и FLK. На рисунке DL – биссектриса треугольника DEF, вписанного в окружность. DL пересекает окружность в точке K, которая соединена отрезками с вершинами E и F треугольника. Найдите подобные треугольники.

№ слайда 27 Упражнение 22 Ответ: ABH и ADC, ACH и ADB, ABM и CDM, BMD и AMC. В окружность вп
Описание слайда:

Упражнение 22 Ответ: ABH и ADC, ACH и ADB, ABM и CDM, BMD и AMC. В окружность вписан остроугольный треугольник ABC, AH – его высота, AD – диаметр окружности, который пересекает сторону BC в точке M. Точка D соединена с вершинами B и C треугольника. Найдите подобные треугольники.

№ слайда 28 Упражнение 23 Докажите, что произведение отрезков хорд, проведенных через внутре
Описание слайда:

Упражнение 23 Докажите, что произведение отрезков хорд, проведенных через внутреннюю точку круга, постоянно и равно произведению отрезков диаметра, проведенного через ту же точку.

№ слайда 29 Упражнение 24 Радиус окружности равен 2. Через середину C радиуса под углом 45о
Описание слайда:

Упражнение 24 Радиус окружности равен 2. Через середину C радиуса под углом 45о к нему проведена хорда AB. Найдите произведение отрезков AC и BC. Ответ. 3.

№ слайда 30 Упражнение 25 Через внешнюю точку E окружности проведены две прямые, пересекающа
Описание слайда:

Упражнение 25 Через внешнюю точку E окружности проведены две прямые, пересекающая окружность соответственно в точках A, C и B, D. Докажите, что треугольники ADE и BCE подобны. Доказательство: Угол D треугольника ADE равен углу C треугольника BCE, как вписанные углы, опирающиеся на одну дугу окружности. Угол E этих треугольников общий. Следовательно, треугольники ADE и BCE подобны по первому признаку.

№ слайда 31 Упражнение 26 Через внешнюю точку E окружности проведены две прямые, пересекающа
Описание слайда:

Упражнение 26 Через внешнюю точку E окружности проведены две прямые, пересекающая окружность соответственно в точках A, C и B, D. Докажите, что AE·CE = BE·DE.

№ слайда 32 Упражнение 27 На рисунке AE = 9, BE = 8, CE = 24. Найдите DE. Ответ: 27.
Описание слайда:

Упражнение 27 На рисунке AE = 9, BE = 8, CE = 24. Найдите DE. Ответ: 27.

№ слайда 33 Упражнение 28 Через внешнюю точку E окружности проведены прямая, пересекающая ок
Описание слайда:

Упражнение 28 Через внешнюю точку E окружности проведены прямая, пересекающая окружность в точках A и B, и касательная EС (C – точка касания). Докажите, что треугольники EAC и ECB подобны. Доказательство. У треугольников EAC и ECB угол E общий. Углы ACE и CBE равны, как углы, опирающиеся на одну хорду. Следовательно, треугольники EAC и ECB подобны.

№ слайда 34 Упражнение 29 Через внешнюю точку E окружности проведены прямая, пересекающая ок
Описание слайда:

Упражнение 29 Через внешнюю точку E окружности проведены прямая, пересекающая окружность в точках A и B, и касательная EС (C – точка касания). Докажите, что произведение отрезков AE и BE секущей равно квадрату отрезка CE касательной. Доказательство. Треугольники EAC и ECB подобны. Следовательно, AE:CE = CE:BE, значит, AE·BE = CE2.

№ слайда 35 Упражнение 30 Радиус окружности равен 2. На продолжении радиуса взята точка C, о
Описание слайда:

Упражнение 30 Радиус окружности равен 2. На продолжении радиуса взята точка C, отстоящая от центра O окружности на расстояние 3. Через точку C проведена прямая под углом 30о к OC, пересекающая окружность в точках A и B. Найдите произведение отрезков AC и BC. Ответ: 5.

№ слайда 36 Упражнение 31 На рисунке AE = 6, BE = 24. Найдите CE. Ответ: 12.
Описание слайда:

Упражнение 31 На рисунке AE = 6, BE = 24. Найдите CE. Ответ: 12.

№ слайда 37 Упражнение 32 В треугольнике ABC проведены высоты AA1 и BB1. Докажите, что треуг
Описание слайда:

Упражнение 32 В треугольнике ABC проведены высоты AA1 и BB1. Докажите, что треугольники A1AC и B1BC подобны. Доказательство. Треугольники A1AC и B1BC прямоугольные и имеют общий угол C. Следовательно, они подобны по двум углам.

№ слайда 38 Упражнение 33 Докажите, что в прямоугольном треугольнике перпендикуляр, опущенны
Описание слайда:

Упражнение 33 Докажите, что в прямоугольном треугольнике перпендикуляр, опущенный из прямого угла на гипотенузу, есть среднее геометрическое проекций катетов на гипотенузу. (Средним геометрическим двух положительных чисел a и b называется положительное число c, квадрат которого равен ab, т.е. c = ).

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru