Многие знают, что такое лента (лист) Мёбиуса. Многие знают, что такое лента (лист) Мёбиуса. Тем, кто ещё не знаком с удивительным листом, который относится к «математическим неожиданностям», мы предлагаем вместе с нами провести исследование и окунуться в светлое чувство познания.
Лист Мёбиуса – один из объектов области математики под названием «топология» (по-другому – «геометрия положений»). Удивительные свойства листа Мёбиуса – он имеет один край, одну сторону, – не связаны с его положением в пространстве, с понятиями расстояния, угла и тем не менее имеют вполне геометрический характер. Изучением таких свойств занимается топология. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые. Лист Мёбиуса – один из объектов области математики под названием «топология» (по-другому – «геометрия положений»). Удивительные свойства листа Мёбиуса – он имеет один край, одну сторону, – не связаны с его положением в пространстве, с понятиями расстояния, угла и тем не менее имеют вполне геометрический характер. Изучением таких свойств занимается топология. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые.
Запаситесь несколькими листами обычной белой бумаги, клеем и ножницами. Запаситесь несколькими листами обычной белой бумаги, клеем и ножницами.
Зададимся вопросом: Зададимся вопросом: сколько сторон у листа Мёбиуса? Две, как у любого другого? А ничего подобного. У него ОДНА сторона. Не верите? Хотите – проверьте: попробуйте закрасить это кольцо с одной стороны.
Красим, не отрываемся, на другую сторону не переходим. Красим... Закрасили? А где же вторая, чистая сторона? Нету? Ну то-то. Красим, не отрываемся, на другую сторону не переходим. Красим... Закрасили? А где же вторая, чистая сторона? Нету? Ну то-то.
Теперь второй вопрос. Теперь второй вопрос. Что будет, если разрезать обычный лист бумаги? Конечно же, два обычных листа бумаги. Точнее, две половинки листа. А что случится, если разрезать вдоль посередине лист Мёбиуса по всей длине? Два кольца половинной ширины? А ничего подобного. А что?
А если на три части? А если на три части? Три ленты? А ничего подобного!
Получим два сцепленных кольца. Одно из них вдвое длиннее исходного и перекручено два раза. Второе- лист Мёбиуса, ширина которого втрое меньше, чем у исходного. Получим два сцепленных кольца. Одно из них вдвое длиннее исходного и перекручено два раза. Второе- лист Мёбиуса, ширина которого втрое меньше, чем у исходного.
Человечек - перевертыш. Человечек - перевертыш. Вырежьте бумажного человечка и отправьте его вдоль пунктира, идущего посередине листа Мёбиуса.
Он вернулся к месту старта. Но в каком виде! В перевернутом! Он вернулся к месту старта. Но в каком виде! В перевернутом! А чтобы он вернулся к старту в нормальном положении, ему нужно совершить ещё одно «круголистное » путешествие. Проверьте!
Лист Мебиуса - символ математики, Что служит высшей мудрости венцом… Он полон неосознанной романтики: В нем бесконечность свернута кольцом. В нем – простота, и вместе с нею – сложность, Что недоступна даже мудрецам: Здесь на глазах преобразилась плоскость, В поверхность без начала и конца. Лист Мебиуса - символ математики, Что служит высшей мудрости венцом… Он полон неосознанной романтики: В нем бесконечность свернута кольцом. В нем – простота, и вместе с нею – сложность, Что недоступна даже мудрецам: Здесь на глазах преобразилась плоскость, В поверхность без начала и конца.
Лист Мёбиуса – удивительный феномен. Его можно исследовать до бесконечности, мы рассмотрели лишь некоторые его свойства. Надеемся, что мы вас заинтересовали и вы продолжите исследования этого непредсказуемого листа. Лист Мёбиуса – удивительный феномен. Его можно исследовать до бесконечности, мы рассмотрели лишь некоторые его свойства. Надеемся, что мы вас заинтересовали и вы продолжите исследования этого непредсказуемого листа.
Используемая литература: Используемая литература: Внеклассная работа по математике В.А.Гусев, А.И.Орлов, А.Л.Розенталь. Математический цветник Ю.А.Данилова. Краткий очерк истории математики. Д. Я. Стройк. Перевод с немецкого и дополнения И.Б.ПОГРЕБЫССКОГО. Ресурсы: http://slovari.yandex.ru/dict/bse/article/00046/48100.htm http://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D1%81%D1%82_%D0%9C%D1%91%D0%B1%D0%B8%D1%83%D1%81%D0%B0 http://www.genon.ru/GetAnswer.aspx?qid=e2ab6eb5-5fb6-4fc6-b1a4-6ee7961a0dc1 www.vokrugsveta.ru http://shkolazhizni.ru/archive/0/n-13219/ http://www.univer.omsk.su/omsk/Edu/Math/mmebius.htm