PPt4Web Хостинг презентаций

Главная / Математика / Алгебраические методы решения задач на экстремум
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Алгебраические методы решения задач на экстремум


Скачать эту презентацию

Презентация на тему: Алгебраические методы решения задач на экстремум


Скачать эту презентацию

№ слайда 1
Описание слайда:

№ слайда 2 В технике и естествознании, как впрочем и в обыденной жизни В технике и естество
Описание слайда:

В технике и естествознании, как впрочем и в обыденной жизни В технике и естествознании, как впрочем и в обыденной жизни встречается особый вид задач. Это так называемые задачи на «максимум и минимум». Люди издавна желали получить наибольшую выгоду при наименьших затратах. Такие задачи возникают там, где речь идет о том, как при разнообразных возможностях использования наличных средств добиться наилучшего эффекта. Эти задачи в математике называют задачами на экстремум. Огромное число таких задач возникает в экономике и технике. В математике исследование задач на экстремум началось 25 веков назад. С возникновение математического анализа были созданы общие методы их решения. Но и на сегодняшнем этапе оказалось, что методы решения этих задач не исчерпаны. Бурное развитие экономики и техники привело к новой теории- теории оптимального управления.

№ слайда 3
Описание слайда:

№ слайда 4
Описание слайда:

№ слайда 5 Пример решения задачи: Из квадратного листа картона с заданной стороной нужно из
Описание слайда:

Пример решения задачи: Из квадратного листа картона с заданной стороной нужно изготовить квадратную коробку, вырезая по углам листа равные квадраты и загибая образовавшиеся края. Какой величины должна быть сторона каждого вырезанного квадрата, чтобы объем сделанной коробки был наибольшим

№ слайда 6
Описание слайда:

№ слайда 7 Метод, основанный на теореме о произведении нескольких множителей. Метод, основа
Описание слайда:

Метод, основанный на теореме о произведении нескольких множителей. Метод, основанный на теореме о произведении нескольких множителей. Теорема2 Произведение нескольких положительных множителей, сумма которых постоянна, имеет наибольшее значение при равенстве множителей. max при Пример решения задачи. Над центром круглого стола на блоке висит лампа. На какой высоте следует поместить эту лампу, чтобы на краях стола получить наибольшую освещенность?

№ слайда 8 Решение: Решение: Сила света , где k – коэф-нт пропорц. , где X- радиус стола. И
Описание слайда:

Решение: Решение: Сила света , где k – коэф-нт пропорц. , где X- радиус стола. Имеем: Величина достигает максимума при тех же значениях, что и I. Откуда поэтому по теореме наибольшее значение Z достигает, если: то есть при , откуда . Значит .

№ слайда 9
Описание слайда:

№ слайда 10 Метод, основанный на теорема о сумме нескольких положительных слагаемых, произве
Описание слайда:

Метод, основанный на теорема о сумме нескольких положительных слагаемых, произведение которых постоянно Метод, основанный на теорема о сумме нескольких положительных слагаемых, произведение которых постоянно Теорема4 Если сумма нескольких переменных X, Y, Z постоянна, то произведение где p, q, r – данные положительные числа, имеет наибольшее значение, когда переменные пропорциональны своим показателям. Пример решения задачи: Из квадратного листа картона с заданной стороной нужно изготовить квадратную коробку, вырезая по углам листа равные квадраты и загибая образовавшиеся края. Какой величины должна быть сторона каждого вырезанного квадрата, чтобы объем сделанной коробки был наименьшим.

№ слайда 11
Описание слайда:

№ слайда 12 Метод, основанный на теореме о квадратных трехчленах. Метод, основанный на теоре
Описание слайда:

Метод, основанный на теореме о квадратных трехчленах. Метод, основанный на теореме о квадратных трехчленах. Теорема5 Квадратный трехчлен имеет экстремальное значение, принимаемое им при Причем, если a < 0, то оно наибольшее, если а > 0 оно наименьшее.

№ слайда 13 ПРИМЕР решения задачи: В данный шар вписать цилиндр с наибольшей боковой поверхн
Описание слайда:

ПРИМЕР решения задачи: В данный шар вписать цилиндр с наибольшей боковой поверхностью. Решение: Пусть R- радиус шара, r- радиус основания цилиндра, H – высота цилиндра. Боковая поверхность цилиндра: По т. Пифагора откуда: Функция принимает наибольшее значение при тех же значениях, что и S. Применяя теорему имеем: а высота:

№ слайда 14 Метод, основанный на теореме о среднем геометрическом положительных чисел. Метод
Описание слайда:

Метод, основанный на теореме о среднем геометрическом положительных чисел. Метод, основанный на теореме о среднем геометрическом положительных чисел. Теорема6 Среднее геометрическое любого количества положительных чисел не больше их среднего арифметического. Пример решения задачи: На вертикальной стене висит картина. На каком расстоянии от стены должен встать наблюдатель, чтобы угол под которым он видит картину оказался наибольшим?

№ слайда 15 Решение задачи: Пусть К- точка пересечения стены и горизонтальной прямой, проход
Описание слайда:

Решение задачи: Пусть К- точка пересечения стены и горизонтальной прямой, проходящей через глаз наблюдателя. Тогда искомое расстояние есть ОК Решение задачи: Пусть К- точка пересечения стены и горизонтальной прямой, проходящей через глаз наблюдателя. Тогда искомое расстояние есть ОК Пусть Если углы КОА и КОВ обозначить через то и Т.к. То Наибольшее значение угла будет достигаться при наибольшем значении его тангенса. Значит Дробь будет наибольшей, если будет наименьшим, следовательно

№ слайда 16 Подборка прикладных задач. Подборка прикладных задач. 1.На странице текст должен
Описание слайда:

Подборка прикладных задач. Подборка прикладных задач. 1.На странице текст должен занимать 384 см в кв. Верхние и нижние поля должны быть по 3 см, правые и левые по 2 см. Каковы должны быть наиболее выгодные размеры страницы с экономической точки зрения? 2.Нужно обнести забором участок заданной площади так, чтобы затратить наименьшее количество материала для забора.

№ слайда 17 Подборка прикладных задач. Подборка прикладных задач. 4.Какие должны быть размер
Описание слайда:

Подборка прикладных задач. Подборка прикладных задач. 4.Какие должны быть размеры треугольной песочницы, заданного периметра и высоты чтобы её вместимость была наибольшей? 3.Полоса жести заданной ширины должна быть согнута в виде открытого цилиндрического желоба (профиль желоба имеет форму кругового сегмента). Каким должен быть центральный угол, опирающийся на дугу этого сегмента, для того, чтобы вместимость желоба была наибольшей?

№ слайда 18 Подборка прикладных задач. Подборка прикладных задач. 5.Длина почтовой посылки,
Описание слайда:

Подборка прикладных задач. Подборка прикладных задач. 5.Длина почтовой посылки, сложенная с периметром поперечного сечения равна 60см. Найти размеры посылки наибольшего объема, если она имеет форму: А) параллелепипеда Б) цилиндра 6.В данный шар вписать конус наибольшего объема

№ слайда 19 Подборка прикладных задач. Подборка прикладных задач. 7.Из бревна нужно изготови
Описание слайда:

Подборка прикладных задач. Подборка прикладных задач. 7.Из бревна нужно изготовить брус прямоугольного сечения так, чтобы отходы были минимальными. Найти размеры поперечного сечения бруса 8.Общая длина стен на плане дома 90м. При какой ширине коридора площадь 3-х комнат будет наибольшей?

№ слайда 20 Подборка прикладных задач. Подборка прикладных задач. 9. Три пункта А,В, С не ле
Описание слайда:

Подборка прикладных задач. Подборка прикладных задач. 9. Три пункта А,В, С не лежат на одной прямой. Причем угол между дорогами из п В в п. А и С равен 60 градусам. Одновременно из п. А выходит автомобиль, а из п. В поезд. Автомобиль движется в направлении к п. В со скоростью 80 км/час. Поезд движется к п.С со скоростью 50 км/час. В какой момент времени расстояние между ними будет наименьшим, если расстояние между п. А и В 200км?

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru