PPt4Web Хостинг презентаций

Главная / Информатика / Некоторые элементарные приёмы теории графов при решении отдельных задач
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Некоторые элементарные приёмы теории графов при решении отдельных задач


Скачать эту презентацию

Презентация на тему: Некоторые элементарные приёмы теории графов при решении отдельных задач


Скачать эту презентацию

№ слайда 1 Некоторые элементарные приёмы теории графов при решении отдельных задач Автор: К
Описание слайда:

Некоторые элементарные приёмы теории графов при решении отдельных задач Автор: Корбу Наталья Александровна МОУ Средняя общеобразовательная школа №7 города Новокуйбышевска Самарской области.

№ слайда 2 Исторические сведения Основы теории графов как математической науки заложил в 17
Описание слайда:

Исторические сведения Основы теории графов как математической науки заложил в 1736 году Леонард Эйлер. Первые задачи теории графов были связаны с решением математических развлекательных задач и головоломок.

№ слайда 3 Определение и примеры графов.
Описание слайда:

Определение и примеры графов.

№ слайда 4 Задачи о Кёнигсбергских мостах. Рассмотрим знаменитую задачу о Кёнигсбергских мо
Описание слайда:

Задачи о Кёнигсбергских мостах. Рассмотрим знаменитую задачу о Кёнигсбергских мостах. Бывший Кёнигсберг (сейчас это город Калининград) расположен на реке Прегель. В пределах города река омывает два острова.С берегов на острова были перекинуты мосты. Жители города предлагали туристам следующую задачу: пройти по всем мостам и вернуться в начальный пункт, причём на каждом мосту нужно побывать только один раз.

№ слайда 5 Задачи о Кёнигсбергских мостах. С берегов на острова были перекинуты мосты. Жите
Описание слайда:

Задачи о Кёнигсбергских мостах. С берегов на острова были перекинуты мосты. Жители города предлагали туристам следующую задачу: пройти по всем мостам и вернуться в начальный пункт, причём на каждом мосту нужно побывать только один раз. Прогуляться по городским мостам предложили и Эйлеру. После безуспешной попытки совершить нужный обход он начертил упрощённую схему мостов.

№ слайда 6 Головоломки «Не отрывая карандаша от бумаги и не проводя дважды по одной линии,
Описание слайда:

Головоломки «Не отрывая карандаша от бумаги и не проводя дважды по одной линии, начертить фигуру». «Сабли Магомета» «Распечатанное письмо»

№ слайда 7 Графы с цветными рёбрами. Перейдём к рассмотрению графов, в которых рёбра могут
Описание слайда:

Графы с цветными рёбрами. Перейдём к рассмотрению графов, в которых рёбра могут быть окрашены в несколько цветов. Такой граф называется графом с цветными рёбрами. Так же будем рассматривать такие графы, у которых каждая пара вершин соединена ребром. Такие графы называются полными. Применение графов с цветными рёбрами упрощает решение некоторых задач и делает их более наглядными.

№ слайда 8 Некоторые задачи. Шесть школьников участвуют в шахматном турнире, который провод
Описание слайда:

Некоторые задачи. Шесть школьников участвуют в шахматном турнире, который проводится в один круг. Доказать, что всегда среди них найдутся три участника турнира, которые провели уже все встречи между собой, либо ещё не сыграли друг с другом ни одной партии.

№ слайда 9 Некоторые задачи. 1) На географической карте выбраны пять городов. Известно, что
Описание слайда:

Некоторые задачи. 1) На географической карте выбраны пять городов. Известно, что из любых трёх из них найдутся два, соединённые авиалиниями, и два – не соединённые. Докажите, что: 1. Каждый город соединён авиалиниями с двумя и только с двумя другими городами. 2. Вылетев из любого города, можно облететь пять остальных городов, побывав в каждом по одному разу, и вернуться назад. 2) В офисе 15 компьютеров. Можно ли соединить их друг с другом так, чтобы каждый был соединен ровно с тремя другими?3) В государстве 100 городов. Из каждого города выходит четыре дороги. Сколько всего дорог в государстве?

№ слайда 10 Выводы В данной работе рассмотрены некоторые элементарные понятия и положения те
Описание слайда:

Выводы В данной работе рассмотрены некоторые элементарные понятия и положения теории графов, которые применяются при решении головоломок и задач. Решение задач нестандартными приёмами, которые не изучаются в курсе средней школы, расширяют математический кругозор, пробуждают интерес к необычным разделам математики, учат находить нестандартные пути решения задач, особенно задач практической направленности.

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru