PPt4Web Хостинг презентаций

Главная / Геометрия / Площадь многоугольников
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Площадь многоугольников


Скачать эту презентацию

Презентация на тему: Площадь многоугольников


Скачать эту презентацию

№ слайда 1 Площадь многоугольников Подготовила Топорищева Катя 8 Класс
Описание слайда:

Площадь многоугольников Подготовила Топорищева Катя 8 Класс

№ слайда 2 Площадь правильного многоугольника, формула Для того чтобы вычислить площадь пра
Описание слайда:

Площадь правильного многоугольника, формула Для того чтобы вычислить площадь правильного многоугольника его разбивают на равные треугольники с общей вершиной в центре вписанной окружности. А площадь правильного многоугольника равна произведению его полупериметра радиус вписаной окружности правильного многоугольника

№ слайда 3 Содержание 1.Площадь прямоугольника равна произведению его сторон 2.Площадь пара
Описание слайда:

Содержание 1.Площадь прямоугольника равна произведению его сторон 2.Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне 3.Площадь треугольника равна половине произведения его стороны на проведенную к ней высоту 3.Площадь трапеции равна произведению полусуммы его оснований на высоту

№ слайда 4 Доказательство Пусть ABCD и AB1C1D – два прямоугольника с общим основанием AD Пу
Описание слайда:

Доказательство Пусть ABCD и AB1C1D – два прямоугольника с общим основанием AD Пусть S и – их площади. Докажем, что Разобьем сторону AB прямоугольника на некоторое число n равных частей, каждая из которых равна Пусть m – число точек деления, которые лежат нa стороне AB1. Тогда Отсюда, разделив на AB, получим (*) Проведем через точки деления прямые, параллельные основанию AD. Они разобьют прямоугольник ABCD на n равных прямоугольников. Каждый из них имеет площадь Прямоугольник содержит первые m прямоугольника, считая от стороны AD, и содержится в m + 1 прямоугольниках. Поэтому Отсюда (**) Сравнивая неравенства (*) и (**), заключаем, что При этом и – фиксированные числа, а n может быть выбрано сколь угодно большим. Следовательно, неравенство возможно только при Возьмем теперь единичный квадрат, прямоугольник со сторонами 1, a и прямоугольник со сторонами a, b (рис. 13.2.2). Площадь прямоугольника со сторонами 1 и a обозначим Сравнивая их площади, по доказанному будем иметь и Перемножая эти равенства почленно, получим S = a · b. Теорема доказана. стр 1

№ слайда 5 ДОКАЗАТЕЛЬСТВО Пусть ABCD – данный параллелограмм. Если он не является прямоугол
Описание слайда:

ДОКАЗАТЕЛЬСТВО Пусть ABCD – данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности A острый. Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB. Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE · AD. Отрезок AE – высота параллелограмма, соответствующая стороне AD, и, следовательно, S = a · h. Теорема доказана стр 2

№ слайда 6 Доказательство Пусть ABC – данный треугольник .Дополним его до параллелограмма A
Описание слайда:

Доказательство Пусть ABC – данный треугольник .Дополним его до параллелограмма ABCD Площадь параллелограмма равна сумме площадей треугольников ABC и CDA. Так как эти треугольники равны, то площадь параллелограмма равна удвоенной площади треугольника ABC. Высота параллелограмма, соответствующая стороне CB, равна высоте треугольника, проведенной к стороне CB. Отсюда следует утверждение теоремы, и Теорема доказана. стр 3

№ слайда 7 Доказательство Пусть ABCD – данная трапеция Диагональ AC трапеции разбивает ее н
Описание слайда:

Доказательство Пусть ABCD – данная трапеция Диагональ AC трапеции разбивает ее на два треугольника: ABC и CDA. Следовательно, площадь трапеции равна сумме площадей этих треугольников. Площадь треугольника ACD равна площадь треугольника ABC равна Высоты AF и CE этих треугольников равны расстоянию h между параллельными прямыми BC и AD, т.е. высоте трапеции. Следовательно, Теорема доказана. стр 4

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru