АТМОСФЕРНЫЕ ВАРИАЦИИ ИНТЕНСИВНОСТИ МЮОНОВ ДЛЯ РАЗЛИЧНЫХ ЗЕНИТНЫХ УГЛОВ РЕГИСТРАЦИИ
Рассчитанные значения плотности температурных коэффициентов приводятся в (Дорман,1957;1972) и (Кузьмин, 1964) для наземных мюонных телескопов с экранами, имеющими порог регистрации ≤ 0,4 ГэВ, и для системы подземных мюонных телескопов с ≥ 1,6 ГэВ. Мюонный телескоп в Новосибирске имеет экран 0,54 ГэВ (для вертикального потока мюонов), для которого метеорологические коэффициенты интенсивности мюонов неизвестны. Рассчитанные значения плотности температурных коэффициентов приводятся в (Дорман,1957;1972) и (Кузьмин, 1964) для наземных мюонных телескопов с экранами, имеющими порог регистрации ≤ 0,4 ГэВ, и для системы подземных мюонных телескопов с ≥ 1,6 ГэВ. Мюонный телескоп в Новосибирске имеет экран 0,54 ГэВ (для вертикального потока мюонов), для которого метеорологические коэффициенты интенсивности мюонов неизвестны.
Для оценки атмосферных эффектов интенсивности мюонов под различными зенитными углами на фоне возможных первичных вариаций использованы результаты синхронной регистрации интенсивности космических лучей с помощью нейтронного монитора и системы мезонных телескопов с большой эффективной площадью сбора частиц Для оценки атмосферных эффектов интенсивности мюонов под различными зенитными углами на фоне возможных первичных вариаций использованы результаты синхронной регистрации интенсивности космических лучей с помощью нейтронного монитора и системы мезонных телескопов с большой эффективной площадью сбора частиц
Средние (в дальнейшем, опорные) значения температуры в средине каждого слоя атмосферы на стандартных изобарических поверхностях: 900, 800, 700, 600, 500, 400, 300, 200, 100 и 50мб были определены из распределения температуры атмосферы по высоте над Новосибирском, полученного по аэрологическим данным за период с января 2004г по июнь 2005г. Средние (в дальнейшем, опорные) значения температуры в средине каждого слоя атмосферы на стандартных изобарических поверхностях: 900, 800, 700, 600, 500, 400, 300, 200, 100 и 50мб были определены из распределения температуры атмосферы по высоте над Новосибирском, полученного по аэрологическим данным за период с января 2004г по июнь 2005г.
Уравнения регрессии использованы в виде Уравнения регрессии использованы в виде . (1) Здесь - коэффициенты регрессии, и - температура и давление атмосферы на уровне наблюдений космических лучей, и - изменения среднемассовой температуры и давления атмосферы, - вариации интенсивности общей и мюонной компонент, - вариации интенсивности нейтронной компоненты космических лучей, исправленные на барометрический эффект. Изменения среднемассовой температуры , где - изменения температуры в слое атмосферы.
Таблица 1. Метеорологические коэффициенты интенсивности мюонов под различными углами к зениту.
Вариации, обусловленные только Вариации, обусловленные только изменениями температуры атмосферы, , (2) где - плотность температурного коэффициента согласно определению, - толщина слоя i атмосферы, а изменения температуры слоя. Было показано, что (3) где , -изменения средневзвешенной по массе температуры атмосферы, =0,1атм Решение уравнений регрессии (3), учитывая, что , дало следующее распределение плотностей температурных коэффициентов
Используя найденные метеорологические коэффициенты интенсивности , данные о изменениях приземной температуры, давления, температуры различных слоев атмосферы и данные нейтронного монитора, найдены ожидаемые вариации интенсивности мюонов под различными зенитными углами. Результаты расчета сопоставлены с наблюдаемыми вариациями интенсивности. Кривые 1-7 для углов к зениту 0, 30, 40, 50, 60, 67, 71 соответственно.
Изменения температуры различных Изменения температуры различных слоев атмосферы 900, 800, 700, 600, 500, 400, 300, 200, 100, 50мб (кривые 1-10 соответственно) и среднемассовой Температуры (кривая 11), найденные по данным о вариациях интенсивности КЛ решением системы уравнений , представлены сплошными линиями, а результаты прямых измерений - точками.
Степень согласия полученных результатов зависит не только (и не столько) от статистической точности регистрации интенсивности мюонов, сколько от точности и надежности привлекаемых аэрологических данных, при использовании которых приходится очень часто прибегать к интерполяции высотного хода температуры на различных участках. Сказывается и выбранный вид аппроксимации высотного хода температуры, особенно в области 200мб. Многоканальная регистрация интенсивности мюонов под различными углами к зениту позволяет при исследовании модуляционных эффектов КЛ учитывать вариации атмосферного происхождения без привлечения данных аэрологического зондирования. Полученные результаты дают возможность проводить диагностику температурного режима атмосферы по данным о вариациях интенсивности КЛ.
СПАСИБО ЗА ВНИМАНИЕ!
Если в процессе диагностики температурного режима атмосферы число каналов регистрации мюонов под различными зенитными углами меньше числа изобар, можно выражение (3) представить как Если в процессе диагностики температурного режима атмосферы число каналов регистрации мюонов под различными зенитными углами меньше числа изобар, можно выражение (3) представить как так как Изменения температуры также можно найти как , (4) где - температурная составляющая вариации интенсивности мюонов под различными углами к зениту, - коэффициенты регрессии для пар значений и слоя атмосферы, - число каналов регистрации мюонов под зенитными углами . Результаты, полученные с помощью (4) полностью согласуются с результатами, приведенными на рис.2.