Основные © В.Е. Фрадкин, 2004 положения МКТ Из коллекции www.eduspb.com 900igr.net Из коллекции www.eduspb.com
Молекулярно-кинетическая теория учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химического вещества. Левкипп и Демокрит — 400 лет до н.э. М. В. Ломоносов — XVIII в. «0 причине теплоты и холода», «О коловратном движении корпускул». Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Атом и молекула АТОМ – наименьшая частица химического элемента, которая является носителем его химических свойств. МОЛЕКУЛА - наименьшая устойчивая частица вещества, обладающая всеми химическими свойствами и состоящая из одинаковых (простое вещество) или разных (сложное вещество) атомов, объединенных химическими связями. Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Объект и предмет изучения молекулярной физики. Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Границы применимости молекулярно-кинетической теории. Рассматриваются только системы, состоящие из большого числа частиц (N>1020); Температурный интервал, в котором молекулы и атомы можно считать бесструктурными неделимыми частицами: для молекул – 1000 – 3000К, Для атомов – 10000К. Из коллекции www.eduspb.com Из коллекции www.eduspb.com
ЗНАЧЕНИЕ СТАТИСТИЧЕСКОЙ МЕХАНИКИ Объяснение явлений природы: диффузии, поверхностного натяжения, теплового расширения тел и др. Предсказание свойств новых свойств материалов. Расчеты физических характеристик тел: теплоемкости, давление газа и др. Обоснование эмпирических законов идеального газа. Из коллекции www.eduspb.com Из коллекции www.eduspb.com
СТАТИСТИЧЕСКАЯ МЕХАНИКА Система, состоящая из большого числа частиц Броуновское движение Диффузия Изопроцессы Из коллекции www.eduspb.com Из коллекции www.eduspb.com
СРЕДСТВА ОПИСАНИЯ ПОНЯТИЯ Основные положения МКТ 1.Все тела состоят из частиц, разделенных промежутками. 2.Частицы непрерывно, хаотически движутся. 3.Частицы взаимодействуют друг с другом: притягиваются и отталкиваются. ЗАКОНЫ Уравнение МКТ идеального газа. Распределение Максвелла. Равновесная замкнутая система Идеальный газ Молекула и ее характеристики: m,V… Постоянная Больцмана Параметры системы: P,T,V,m,M Среднее значение величин Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Три основных положения МКТ: Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов. Атомы и молекулы находятся в непрерывном хаотическом движении. Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Опытные обоснования МКТ Существование молекул. 1. Делимость вещества. 2. Закон кратных отношений: при образовании из двух элементов различных веществ массы одного из элементов в разных соединениях находятся в кратных отношениях – N2O : N2O2 : N2O3 - 1:2:3. (1803, Дж. Дальтон; 1808, Ж.Л. Гей-Люссак). 3. Наблюдение молекул с помощью ионного проектора, электронного микроскопа, туннельного микроскопа. 4. Явление диффузии. Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Электронный микроскоп Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Изображение головы комара в электронном микроскопе Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Изображение поверхности лазерного диска, полученное с помощью электронного микроскопа Питы Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Поверхность кремния. Изображение получено с помощью туннельного микроскопа Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Опытные обоснования МКТ Наличие промежутков 1. При смешивании различных жидкостей объем смеси меньше суммы объемов отдельных жидкостей. 2. Диффузия. 3. Деформация Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Опытные обоснования МКТ Хаотическое движение молекул 1. Броуновское движение. 2. Диффузия. 3. Давление газа на стенки сосуда. 4. Стремление газа занять любой объем. 5. Опыты по измерению скоростей атомов и молекул методом молекулярных пучков: (И. Штерн, 1920). Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Диффузия явление проникновения частиц одного вещества в промежутки между частицами другого. Скорость диффузии зависит от температуры и состояния вещества (быстрее в газах). Роль в природе, технике 1. Питание растений из почвы. 2. В организмах человека и животных всасывание питательных веществ происходит через стенки органов пищеварения. 3. Работа органов обоняния. 4. Цементация. Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Траектория броуновской частицы. Открыто Р. Броуном (1827 г.). Теория создана А. Эйнштейном и М. Смолуховским (1905 г.). Экспериментально теория подтверждена в опытах Ж. Перрена (1908–1911 гг.). Броуновское движение - беспорядочное движение мелких частиц, взвешенных в жидкости или газе, происходящее под влиянием теплового движения молекул. Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Наблюдение броуновского движения Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Опыты Ж. Б. Перрена Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Опытные обоснования МКТ Силы взаимодействия. 1. Деформация тела. 2. Сохранение формы твердого тела. 3. Поверхностное натяжение жидкости. 4. Свойства прочности, упругости, твердости и т.п. 5. Опыт со свинцовыми цилиндрами. Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Взаимодействие молекул Природа сил взаимодействия – электрическая. Какая модель молекулы здесь используется? Как можно интерпретировать точку r0? Что можно принять за диаметр молекулы? Как будут двигаться частицы, имеющие энергию W? Больше? Меньше? Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Модели движения частиц в различных агрегатных состояниях Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Роберт Броун (Brown, Браун) 21.XII.1773–10.VI.1858 Английский ботаник. Морфолого-эмбриологические исследования Брауна имели большое значение для построения естественной системы растений. Открыл зародышевый мешок в семяпочке, установил основное различие между покрытосеменными и голосеменными; в семяпочках хвойных открыл архегонии. Впервые правильно описал ядро в растительных клетках. Открыл в 1827 беспорядочное движение малых (размерами в нескольких мкм и менее) частиц, взвешенных в жидкости или газе, описал сложные зигзагообразные траектории. Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Эйнштейн (Einstein) Альберт (14.III.1879–18.IV.1955) Физик-теоретик, один из основателей современной физики. Родился в Германии, с 1893 жил в Швейцарии, в 1933 эмигрировал в США. Создатель теории относительности, теории фотоэффекта и др. Нобелевская премия 1921 г. В 1905 вышла в свет его первая серьезная научная работа, посвященная броуновскому движению: «О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории». Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Смолуховский Мариан (28.5.1872 – 5.9.1917) Польский физик. Основные работы по молекулярной физике и термодинамике. Теоретически обосновал явление температурного скачка на границе газ – твердое тело, показал ограниченность классической трактовки второго начала термодинамики, установил законы флуктуаций равновесных состояний и др. В 1905 – 06 гг. исходя из кинетического закона распределения энергии создал теорию броуновского движения, которая доказала справедливость кинетической теории теплоты. Из коллекции www.eduspb.com Из коллекции www.eduspb.com
Перрен (Perrin) Жан Батист (30.IX.1870–17.IV.1942) Французский физик. Доказал, что катодные лучи представляют собой поток заряженных частиц. Изучал электрокинетические явления и предложил прибор для исследования электроосмоса (1904). Установил бимолекулярную структуру тонких мыльных пленок. Совместно с сыном Ф. Перреном исследовал явления флуоресценции. Нобелевская премия (1926). Работы Перрена по изучению броуновского движения явились экспериментальным подтверждением теории Эйнштейна–Смолуховского; они позволили Перрену получить значение числа Авогадро, хорошо согласующееся со значениями, полученными др. методами, и окончательно доказать реальность молекул. Из коллекции www.eduspb.com Из коллекции www.eduspb.com