Комплексные числа
ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ ЧИСЛОВЫЕ И БУКВЕННЫЕ ВЫРАЖЕНИЯ Комплексные числа. Геометрическая интерпретация комплексных чисел. Действительная и мнимая часть, модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы записи комплексных чисел. Арифметические действия над комплексными числами в разных формах записи. Комплексно сопряженные числа. Возведение в натуральную степень (формула Муавра). Основная теорема алгебры.
Понятие комплексного числа Х+А=В - недостаточно положительных чисел А·Х + В=0 (А≠0) – разрешимы на множестве рац.чисел Х²=2 или Х³=5 - корни - иррациональные числа
Рациональные числа Иррациональные числа Действительные числа
Решение квадратных уравнений А · Х²+ В ·Х+ С =0 При D<0 действительных корней нет
Рациональные числа Иррациональные числа Действительные числа Комплексные числа
Вид комплексного числа Х²=-1 Х=i -корень уравнения i- комплексное число, такое , что i²=-1
А + В· i А и В – действительные числа i- некоторый символ , такой, что i²= -1 А – действительная часть В – мнимая часть i – мнимая единица
Геометрическая интерпретация комплексного числа
Комплексно сопряженные числа. Модуль комплексного числа
Тригонометрическая форма комплексного числа φ- аргумент аргумент комплексного числа Z=r cos φ + i Z sin φ = = r (cos φ+ i sin φ) Для Z=0 аргумент не определяется
Т.к Z =r =
Сложение и умножение комплексных чисел
Если Z 1= Z2, то получим Z²=[r (cos φ+ i sin φ)]²= r² (cos2 φ+ i sin 2φ) Z³= Z²·Z=[r (cos φ+ i sin φ)]²·r (cos φ+ i sin φ)= r³ (cos3 φ+ i sin 3φ)
Число Z называется корнем степени n из числа ω (обозначается ), если (*) Из данного определения вытекает, что каждое решение уравнения является корнем степени n из числа ω.
Вторая формула Муавра определяет все корни двучленного уравнения степени n Теорема Гаусса: каждое алгебраическое уравнение имеет в множестве комплексных чисел по крайне мере один корень Каждое алгебраическое уравнение степени n имеет в множестве комплексных чисел ровно n-корней.
Пример: Решить уравнение:
Свойства сложения и умножения Переместительное свойство: Сочетательное свойство: Распределительные свойство:
Геометрическое изображение суммы комплексных чисел
Вычитание и деление комплексных чисел
Геометрическое изображение разности комплексных чисел
Примеры: Найти разность и частное комплексных чисел
Литература Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. и др/ Алгебра и начала анализа 10-11кл, Просвещение 2005г, Колмагоров А.Н., Абрамов, Дудицин/ Алгебра и начала анализа 10-11кл, Просвещение 2005г НикольскийС.М., Потапов Н.К, и др. Алгебра и начала анализа 10-11кл, Просвещение 2005г