PPt4Web Хостинг презентаций

Главная / Алгебра / История логарифмов
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: История логарифмов


Скачать эту презентацию

Презентация на тему: История логарифмов


Скачать эту презентацию



№ слайда 1
Описание слайда:

№ слайда 2
Описание слайда:

№ слайда 3
Описание слайда:

№ слайда 4
Описание слайда:

№ слайда 5 Изобретение логарифмов в начале XVII в. тесно связано с развитием в XVI в. произ
Описание слайда:

Изобретение логарифмов в начале XVII в. тесно связано с развитием в XVI в. производства и торговли, астрономии и мореплавания, требовавших усовершенствования методов вычислительной математики. Изобретение логарифмов в начале XVII в. тесно связано с развитием в XVI в. производства и торговли, астрономии и мореплавания, требовавших усовершенствования методов вычислительной математики. Все чаще требовалось быстро производить громоздкие действия над многозначными числами, все точнее и точнее должны были быть результаты действий. Вот тогда-то и нашла воплощение идея логарифмов, ценность которых состоит в сведении сложных действий III ступени (возведения в степень и извлечения корня) к более простым действиям II ступени (умножению и делению), а последних - к самым простым, к действиям I ступени (сложению и вычитанию).

№ слайда 6 Логарифмы необычайно быстро вошли в практику. Изобретатели логарифмов не огранич
Описание слайда:

Логарифмы необычайно быстро вошли в практику. Изобретатели логарифмов не ограничились разработкой новой теории. Было создано практическое средство - таблицы логарифмов, - резко повысившее производительность труда вычислителей. Логарифмы необычайно быстро вошли в практику. Изобретатели логарифмов не ограничились разработкой новой теории. Было создано практическое средство - таблицы логарифмов, - резко повысившее производительность труда вычислителей. Первые таблицы логарифмов составлены независимо друг от друга шотландским матаматиком Дж. Непером(1550 - 1617) и швейцарцем И. Бюрги (1552 - 1632). В таблицы Непера, изданные в книгах под названиями "Описание удивительной таблицы логарифмов" (1614 г.) и "Устройство удивительной таблицы логарифмов" (1619 г.), вошли значения логарифмов синусов, косинусов и тангенсов для углов от 0 до 90 с шагом в 1 минуту. Бюрги подготовил свои таблицы логарифмов чисел, по-видимому, к 1610 г., но вышли в свет они в 1620 г., уже после издания таблиц Непера, и поэтому остались незамеченными.

№ слайда 7 Уже в 1623 г., т. е. всего через 9 лет после издания первых таблиц, английским м
Описание слайда:

Уже в 1623 г., т. е. всего через 9 лет после издания первых таблиц, английским математиком Д. Гантером была изобретена первая логарифмическая линейка, ставшая рабочим инструментом для многих поколений. Уже в 1623 г., т. е. всего через 9 лет после издания первых таблиц, английским математиком Д. Гантером была изобретена первая логарифмическая линейка, ставшая рабочим инструментом для многих поколений. Вплоть до самого последнего времени, когда на наших глазах повсеместное распространение получает электронная вычислительная техника и роль логарифмов как средств вычислений резко снижается.

№ слайда 8 Термин «ЛОГАРИФМ» предложил Дж. Непер; он возник из сочетания греческих слов log
Описание слайда:

Термин «ЛОГАРИФМ» предложил Дж. Непер; он возник из сочетания греческих слов logos (здесь — отношение) и arithmos (число); в античной математике квадрат, куб и т. д. отношения а/b называются «двойным», «тройным» и т. д. отношением. Термин «ЛОГАРИФМ» предложил Дж. Непер; он возник из сочетания греческих слов logos (здесь — отношение) и arithmos (число); в античной математике квадрат, куб и т. д. отношения а/b называются «двойным», «тройным» и т. д. отношением. Таким образом, для Непера слова «lógu arithmós» означали «число (кратность) отношения», то есть логарифм у Дж. Непера — вспомогательное число для измерения отношения двух чисел.

№ слайда 9 Шотландский математик, изобретатель логарифмов. Шотландский математик, изобретат
Описание слайда:

Шотландский математик, изобретатель логарифмов. Шотландский математик, изобретатель логарифмов. Учился в Эдинбургском университете. Основными идеями учения о логарифмах Непер овладел не позднее 1594 г., однако его "Описание удивительной таблицы логарифмов", в котором изложено это учение, было издано в 1614 г. В этом труде содержались определение логарифма, объяснение их свойств, таблицы логарифмов синусов, косинусов, тангенсов и приложения логарифмов в сферической тригонометрии. В "Построении удивительной таблицы логарифмов" (опубликовано в 1619) Непер изложил принцип вычисления таблиц.

№ слайда 10 Основные работы Архимеда касались различных практических приложений математики (
Описание слайда:

Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. В сочинении "Параболы квадратуры" Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде "Об измерении круга" Архимед впервые вычислил число "пи" - отношение длины окружности к диаметру - и доказал, что оно одинаково для любого круга. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. В сочинении "Параболы квадратуры" Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде "Об измерении круга" Архимед впервые вычислил число "пи" - отношение длины окружности к диаметру - и доказал, что оно одинаково для любого круга.

№ слайда 11 Эйлер принадлежит к числу гениев, чьё творчество стало достоянием всего человече
Описание слайда:

Эйлер принадлежит к числу гениев, чьё творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Эйлер принадлежит к числу гениев, чьё творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Студенты проходят высшую математику по руководствам, первыми образцами которых явились классические монографии Эйлера. Он был прежде всего математиком, но он знал, что почвой, на которой расцветает математика, является практическая деятельность. Он оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. Трудно даже перечислить все отрасли, в которых трудился великий учёный.

№ слайда 12 Маркушевич А. И., Площади и логарифмы, М. — Л., 1952; История математики, т. 2,
Описание слайда:

Маркушевич А. И., Площади и логарифмы, М. — Л., 1952; История математики, т. 2, М., 1970. Маркушевич А. И., Площади и логарифмы, М. — Л., 1952; История математики, т. 2, М., 1970. Интернет-ресурсы Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики. М., 1986

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru