ДЕЛЕНИЕ ВО МНОЖЕСТВЕ МНОГОЧЛЕНОВ Автор: Гордина Наталья, учащаяся 10 класса Муниципального общеобразовательного учреждения «Средняя общеобразовательная школа №3» города Ртищево Руководитель: учитель математики Алексашина Галина Михайловна 5klass.net
ЧТО ТАКОЕ МНОГОЧЛЕН? Многочленом с переменной х (или от переменной х), называют сумму степеней переменной х с натуральным показателем, с некоторыми коэффициентами, то есть: P(x) =a0xп+a1xп-1+…+aп-1x+aп, где а0, а1, …, ап-1, ап – некоторые числа, причем а0≠0, n – натуральное число. Рп(х) – обозначение многочлена степень которого равна п.
Многочлен Р(х) делится на многочлен Q(х)≠0, если Р(х)=Q(x)∙M(x), где М(х) – некоторый многочлен.
Свойства делимости многочленов «столбиком»:
1 свойство: Если многочлен Pn(x) делится на многочлен Qk(x), а многочлен Qk(x) делится на многочлен Mm(x), то многочлен Pn(x) делится на многочлен Mm(x).
2 свойство: Если многочлены Рn(х) и Qn(x) делятся на многочлен Mk (x), то многочлены Рn(х)+Qn(x) и Рn(х)-Qn(x) делятся на многочлен Mk(x), а многочлен Рn(х)· Qn(x) делится на многочлен M2k(x).
3 свойство: Если P(x) делится на Q(x), то всякий корень Q(x) является корнем P(x). Действительно если P(x)= Q(x)·M(x) и Q(с)=0, то P(с)=Q(с) M(с)=0.
Алгоритм деления многочленов «столбиком» Расположить делимое и делитель в убывающих степенях х; Разделить старший член делимого на старший член делителя; затем полученный одночлен сделать первым членом частного; Первый член частного умножить на делитель, результат вычесть из делимого; полученная в результате разница является первым остатком; Чтобы получить следующий член частного, нужно с первым остатком поступить так, как поступали с делимым и делителем в пунктах 2 и 3. Это следует продолжать до тех пор, пока не будет получен остаток, равный нулю или остаток, степень которого меньше степени делителя.
Разделить уголком многочлен P(x)=10х2-7х-12 на многочлен Q(x)=5х+4. Решение. делимое _ 10х2-7х-12 5х+4 делитель 10х2+8х 2х-3 частное первый остаток _-15х-12 -15х-12 0 остаток Ответ: 2х-3.
Разделить многочлен P(x)=3х4+2х2-1 на многочлен Q(x)=х2+х. Решение. _3х4 +2х2-1 х2+х 3х4+3х2 3х2-3х+5 _-3х3+2х2-1 -3х3 -3х2 _5х2- 1 5х2+5х - 5х-1 Ответ: частное 3х2-3х+5, остаток- 5х-1.
Задача 2п2 -11п+13 При каких натуральных значениях п выражение п-3 является целым числом? Решение. Разделим числитель дроби на знаменатель с остатком: _2п2-11п+13 п-3 2п2-6п 2п-5 _-5п+13 -5п+15 -2 2 Таким образом, исходное выражение равно 2п-5- , что п-3 является целым числом тогда и только тогда, когда 2 нацело делится на п-3 . поскольку целыми делителями числа 2 являются числа -2, -1, 1, 2 и только они, получаем п=1, 2, 4, 5. Ответ: п=1, 2, 4, 5.
Степень частного равна разности степеней делимого и делителя, а степень остатка всегда меньше степени делителя.
Алгоритм вычислений по схеме Горнера:
1 шаг. Под первым коэффициентом делимого а0 пишется ещё раз этот коэффициент. 2 шаг. Под коэффициентом а1 пишется число b1=a0b+a1.
3 шаг. Под коэффициентом а2 пишется число b2= b1b+а2. 4 шаг. Под коэффициентом а3 пишется число b3= b2b+а3; b3=R – остаток.
Для любого многочлена Р(х)=а0хп+а1хп-1+…+ап-1х+ап и любого числа с можно написать разложение Р(х) по степеням разности х-с: Р(х)= b0(x-c)п+b1(x-c)п-1+…+bп-1(x- -c)+bп.
Разложить многочлен Р(х)=х4-5х3-3х2+9 по степеням разности х-3. Решение. Выполним деление по схеме Горнера: Таким образом, Р(х)=(х-3)4+7(х-3)3+6(х-3)2-45(х-3)-72. 1 -5 -3 0 9 3 1 -2 -9 -27 -72 1 1 -6 -45 1 4 6 1 7 1
Теорема Безу
Определение. Остаток от деления многочлена Р(х) на двучлен х-а равен значению этого многочлена при х=а: Р(а)=R.
Следствие №1. Если х=а – корень уравнения Рп(х)=0, то R=0 и многочлен Рп(х) делится нацело на двучлен х-а. Следствие №2. Если многочлен Рп(х) делится нацело на двучлен х-а, то х=а – корень уравнения Рп(х)=0.
Задача Выяснить, делится ли нацело многочлен Р(х)=х100+3х79+х48-х27 на х+1. Решение. Остаток от деления Р(х) на х+1 равен Р(-1)=(-1)100+3·(-1)79+(-1)48-(-1)27 =1-3+1+1=0. Ответ: многочлен Р(х) нацело делится на х+1
Список используемой литературы Гусев В.А., Мордкович А.Г. Мат.: Справочные материалы: Кн. для учащихся. – М.: Просвещение, 1988 – 416с.:ил. Дорофеев Г.Д. «Многочлены с одной переменной». / Журнал математика для школьников. – 2005год. – №3 Колягин Ю. «Многочлены и уравнения высших степеней». / Учебно-методическая газета «Математика» – 2005год – №2 Алгебра и начала анализа: Учебник для 10 класса общеобразовательных учреждений / С.М.Никольских, М.К.Потапов, Н.Н.Решетников, А.В.Шевпин. – М.: Просвещение, 2006год Факультативный курс по математике: Учебное пособие для 7-9класс средней школы / Составитель И.Л.Никольская. – М.: Просвещение, 1991год Энциклопедический словарь юного математика: сост. Савин А.П. – М.: Педагогика, 1985 – 352с.:ил.