МОУ гимназия №9 Выполнили:Алиновская АлинаРусакова ЕлизаветаРуководитель: Рафикова Галина Михайловна
Совершенные числа Дружественные числа
На этой математической розе даны две темы:Совершенные числаиДружественные числа.Для перехода необходимо нажать на фигуру в розе, на которой написана тема.
Все мы говорим: «О, это совершенство», «Вы само совершенство» и т.п.Но что же значит слово «совершенство»?Совершенство – полнота всех достоинств, высшая степень какого-нибудь определённого качества(«Толковый словарь русского языка»,С.И.Ожегов)А что же такое совершенное число? Может это просто напросто идеал числа? Или всё же оно имеет другое значение? Давайте узнаем…
Содержание Определение Свойства История Факты
Определение Совершенное число (др.-греч. ἀριθμὸς τέλειος) — натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого числа).
Совершенное число 6 (1 + 2 + 3 = 6)28 (1 + 2 + 4 + 7 + 14 = 28)496812833 550 3368 589 869 056137438691328…
Чётные совершенные числа Чётные совершенные числа Алгоритм построения чётных совершенных чисел описан в IX книге Начал Евклида, где было доказано, что числа вида 2p - 1(2p - 1) являются совершенными, если p и 2p - 1 являются простыми числами (т. н. простые числа Мерсенна). Впоследствии Леонард Эйлер доказал, что все чётные совершенные числа имеют вид, указанный Евклидом.
Чётные совершенные числа Чётные совершенные числа Чётные совершенные числа Леонард Эйлер Начала Евклида
История изучения Первые четыре совершенных числа в Арифметике Никомаха Геразского Пятое совершенное число 33550336 немецкий математик Региомонтан (XV век) 8589869056 и 137438691328 немецкий ученый Шейбель (XVI веке); р = 17 и р = 19 В начале XX в. были найдены еще 3 совершенных числа (для р = 89, 107 и 127)
История изучения Чётные совершенные числа . Открытие. Региомонтан
История изучения В дальнейшем поиск затормозился вплоть до середины XX в., когда с появлением компьютеров стали возможными вычисления, ранее превосходившие человеческие возможности. На октябрь 2008 г. известно 46 чётных совершенных чисел, поиском новых таких чисел занимается проект распределённых вычислений GIMPS.
История изучения Нечётные совершенные числа До сих пор науке неизвестно ни одного нечётного совершенного числа. Но при этом не доказано того, что их нет. Так же не известно, бесконечно ли множество всех совершенных чисел. Доказано, что нечётное совершенное число, если оно существует, имеет не менее 9 различных простых делителей и не менее 75 простых делителей с учетом кратности. Поиском нечётных совершенных чисел занимается проект распределённых вычислений OddPerfect.org.
Свойства совершенных чисел Все чётные совершенные числа (кроме 6) являются суммой кубов последовательных нечётных натуральных чисел: ( 13 + 33 +53 + …). Все чётные совершенные числа являются треугольными числами; кроме того, они являются шестиугольными числами, то есть могут быть представлены в виде n(2n−1).
Свойства совершенных чисел Сумма всех чисел, обратных делителям совершенного числа (включая его самого), равна 2. Все чётные совершенные числа (кроме 6) заканчиваются в десятичной записи на 16, 28, 36, 56, 76 или 96.
Совершенный характер чисел 6 и 28 был признан многими культурами, обратившими внимание на то, что Луна совершает оборот вокруг Земли каждые 28 дней, и утверждавшими, что Бог сотворил мир за 6 дней.
В сочинении «Град Божий» Св. Августин высказал мысль о том, что хотя Бог мог сотворить мир в одно мгновенье, Он предпочел сотворить его за 6 дней, дабы поразмыслить над совершенством мира. По мнению Св. Августина, число 6 совершенно не потому, что Бог избрал его, а потому, что совершенство внутренне присуще природе этого числа.
«Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней».
Дружественные числа ОПРЕДЕЛЕНИЕСПОСОБЫ НАХОЖДЕНИЯСПИСОК ДРУЖЕСТВЕННЫХ ЧИСЕЛ
Листая энциклопедию, ища тему для проекта, мы наткнулись на «Дружественные числа». Нас заинтересовало, и мы решили поработать над ней.
Дружественные числа Дружественные числа – два натуральных числа, для которых сумма всех делителей первого числа (кроме него самого) равна второму числу и сумма всех делителей второго числа (кроме него самого) равна первому числу. Бывает, что дружественные числа являются совершенными. В таких случаях говорят, что каждое совершенное число дружественно самому себе. Но обычно дружественными числами являются пара разных чисел.
Дружественные числа были открыты последователями Пифагора. Правда, пифагорейцы знали только одну пару дружественных чисел — 220 и 284. Только спустя много столетий Эйлер нашёл ещё 65 пар дружественных чисел. Одна из них — 17296 и 18416. Но общего способа нахождения таких пар нет до сих пор.
Формулу, дающую 3 пары дружественных чисел, открыл примерно в 850 году арабский астроном и математик Сабит ибн Курра (826—901): еслиr = 9 · 22n - 1 - 1 p = 3 · 2n - 1 - 1q = 3 · 2n - 1
где n > 1 — натуральное число, а p, q, r— простые числа, то 2npq и 2nr — пара дружественных чисел. Эта формула даёт пары (220, 284), (17296, 18416) и (9363584, 9437056) соответственно для n = 2, 4, 7, но больше никаких пар дружественных чисел для n < 20000. Кроме того, многие дружественные числа, например (6232, 6368), не могут быть получены по этой формуле.
На ноябрь 2006 известно 11 446 960 пар дружественных чисел. Все они состоят из двух чётных или двух нечётных чисел. Есть ли чётно-нечётная пара дружественных чисел, неизвестно. Также неизвестно, существуют ли взаимно простые дружественные числа, но если такая пара дружественных чисел существует, их произведение должно быть больше 1067.
Способы нахождения Теорема Сабита Рецепт Вальтера Боро
Теорема Сабита Если все три числа r = 9 · 22n - 1 – 1, p = 3 · 2n – 1 - 1 и q = 3 · 2n - 1 простые, то числа 2n · r и 2n · p · q — дружественные. Рецепт Вальтера Боро Если для пары дружественных чисел вида A = au и B = as числа s и p = u + s + 1 являются простыми, причём a не делится на p, то при всех тех натуральных n, при которых оба числа q1 = (u + 1)pn + 1 − 1 и q2 = (u + 1)(s + 1)pn − 1 просты, числа B1 = Apnq1 и B2 = apnq2 — дружественные.
Краткая таблица дружественных чисел 220 и 284 (Пифагор, около 500 до н. э.)1184 и 1210 (Паганини, 1860)2620 и 2924 (Эйлер, 1747)5020 и 5564 (Эйлер, 1747)6232 и 6368 (Эйлер, 1750)10744 и 10856 (Эйлер, 1747)12285 и 14595 (Браун, 1939)17296 и 18416 (Ибн ал-Банна, около 1300, Фариси, около 1300, Ферма, Пьер, 1636)
Краткая таблица дружественных чисел 63020 и 76084 (Эйлер, 1747)66928 и 66992 (Эйлер, 1750)67095 и 71145 (Эйлер, 1747)69615 и 87633 (Эйлер, 1747)79750 и 88730 (Рольф (Rolf), 1964)100485 и 124155 (...)122265 и 139815 (...)122368 и 123152 (...)