Множество. Элемент множества
Множество: множество четных чисел;множество двузначных чисел;множество правильных дробей со знаменателем 5;множество диагоналей многоугольника;множество точек координатной плоскости;множество прямых, проходящих через данную точку.
Объекты или предметы, составляющие множество, называют элементами множества.Например: число 89 – элемент множества двузначных чисел.
Множества бывают конечные и бесконечные.Например: множество двузначных чисел – конечное множество (оно содержит 90 элементов),а множество четных чисел – бесконечное множество.
Пустое множество
Конечные множества обычно записывают с помощью фигурных скобок.Например, множество вершин шестиугольника можно записать так:
Множества принято обозначать большими буквами латинского алфавита.Например, можно записать так
Для основных числовых множеств введены специальные обозначения: множество натуральных чисел обозначают буквой N (от латинского слова natural – «естественный», множество целых чисел – буквой Z (от немецкого слова zahl – «число», множество рациональных чисел – буквой Q (от латинского слова quotient – «отношение»).
В тех случаях, когда задание множества перечислением элементов невозможно (как для бесконечного множества) или громоздко (как для конечного множества с большим числом элементов), множество задают описанием, указав его характеристическое свойство, т.е. свойство, которым обладают все элементы этого множества и не обладают никакие другие объекты.
множество всех натуральных чисел от 1 до 14 включительно;множество всех натуральных чисел, меньших 15;множество значений х, где и Тот факт, что множество А состоит из элементов х, удовлетворяющих этим условиям, будем записывать так: