PPt4Web Хостинг презентаций

Главная / Математика / Как измерить расстояние между родственниками
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Как измерить расстояние между родственниками


Скачать эту презентацию

Презентация на тему: Как измерить расстояние между родственниками


Скачать эту презентацию

№ слайда 1 Муниципальное бюджетное общеобразовательное учреждение “Кабановская СОШ” “Как из
Описание слайда:

Муниципальное бюджетное общеобразовательное учреждение “Кабановская СОШ” “Как измерить расстояние между родственниками” Автор:Ученица 5“б” классаБалабойко Анастасия ВячеславовнаРуководитель:Учитель математикиЖукова Валентина Витальевна

№ слайда 2 Граф Графом называют множество, в котором некоторые пары элементов выделены; эле
Описание слайда:

Граф Графом называют множество, в котором некоторые пары элементов выделены; элементы каждой выделенной пары называют смежными друг другу или просто смежными.Пример – множество станций метро какого-то города. Будем считать станции смежными, если между ними нет промежуточных станций. На изображенной на рисунке части схемы линий московского метро станции «Динамо» и «Аэропорт» смежные, а «Динамо» и «Сокол» несмежные. Очень удобно изображать элементы графа точками (или, скажем, кружочками) на плоскости, причем смежные элементы соединять линией, например отрезком. При таком изображении элементы графа принято называть вершинами, а линии, соединяющие смежные вершины, - ребрами. Например, в графе на этом рисунке пять вершин и четыре ребра.

№ слайда 3 Любой многоугольник можно считать графом. У треугольника любые две вершины смежн
Описание слайда:

Любой многоугольник можно считать графом. У треугольника любые две вершины смежные, а у четырехугольника четыре пары смежных вершин и две пары несмежных. Если в четырехугольнике провести диагонали, то получится граф, у которого любые две вершины смежные.

№ слайда 4 Графы на плоскости. При изображении графа на плоскости неважно, каково обычное р
Описание слайда:

Графы на плоскости. При изображении графа на плоскости неважно, каково обычное расстояние между вершинами и какой вид имеют ребра. Графы на трех приведенных ниже рисунках считаются одинаковыми. В каждом из них 3 вершины и 2 ребра, причем в каждом графе вершины А и В, В и С смежны, а А и С не смежны. Именно таким описанием вершин и ребер можно задать указанный один и тот же граф.

№ слайда 5 О путях и графах. Если дан граф, то двигаясь по его ребрам (как «по дорогам»), м
Описание слайда:

О путях и графах. Если дан граф, то двигаясь по его ребрам (как «по дорогам»), можно попадать из одной вершины в какую-нибудь другую.Всякую цепочку ребер, соединяющую две вершины, называют путем между этими вершинами, а число ребер в пути – длиной этого пути. Обозначать путь удобно цепочкой вершин, последовательно участвующих в этом пути. Например, из вершины А в вершину F можно пройти по пути ACF, или по пути ADEF, или по пути ACDEF.

№ слайда 6 Граф родственных отношений. Семья, в которой есть отец, мать, их сын и дочь, а т
Описание слайда:

Граф родственных отношений. Семья, в которой есть отец, мать, их сын и дочь, а также мать отца, изображается следующим графом: Рассматривая пути между его вершинами, мы видим, что расстояние между бабушкой и внучкой равно 2, между братом и сестрой тоже равно 2.

№ слайда 7 С помощью графов можно составить генеалогическое древо своей семьи.
Описание слайда:

С помощью графов можно составить генеалогическое древо своей семьи.

№ слайда 8 Задача о Кенигсбергских мостах. В городе Кенигсберге (ныне Калининград – самый з
Описание слайда:

Задача о Кенигсбергских мостах. В городе Кенигсберге (ныне Калининград – самый западный областной центр России) есть остров, окруженный рекой, через которую перекинуто семь мостов. Можно ли обойти их все, пройдя только однажды через каждый мост?Кенигсбергские обыватели истоптали много обуви, пытаясь обойти мосты так, как требует условие, но безуспешно. В 1736 году о «непроходимых» Кенигсбергских мостах прослышали в Петербурге, где занятной задачей заинтересовался сам Леонард Эйлер (математик из Швейцарии с 1727 г. работал в Российской Академии наук). Он быстро понял причину затруднений, причем для этого ему не понадобилось ехать в Кенигсберг. Вместо плана Кенигсберга можно рассматривать просто граф, в котором ребра соответствуют мостам, а вершины – различным частям города.

№ слайда 9 Задача о Кенигсбергских мостах. Задача о мостах превращается в такую задачу про
Описание слайда:

Задача о Кенигсбергских мостах. Задача о мостах превращается в такую задачу про этот граф: есть ли в графе путь, который проходит по разу через каждое ребро? Допустим, что, идя по такому пути, мы зашли по какому-то ребру a в вершину А. Понятно, что выйти из А придется по другому ребру (скажем, b) – ведь проходить второй раз через ребро a не разрешается. Итак, к вершине А ведут по крайней мере 2 ребра: a и b. Если, продолжая движение, мы снова попадем в вершину А по еще одному ребру с, то выйдем из А по опять-таки новому, «нехоженому» ребру d, т.е. возникнет еще одна пара ребер. И так далее – ребра, сходящиеся в вершине А, разбиваются на такие пары: Итак, вывод: раз ребра, сходящиеся в вершине А, можно разбить на пары, то таких ребер четное число. Значит, если в каком-либо графе есть путь, который проходит ровно по одному разу через каждое ребро, то в каждой вершине такого графа, кроме, может быть, двух, должно сходиться четное число ребер.

№ слайда 10 Выводы Сделав вывод, посмотрим снова на граф. В каждой его вершине сходится нече
Описание слайда:

Выводы Сделав вывод, посмотрим снова на граф. В каждой его вершине сходится нечетное число ребер. Значит, через ребра этого графа нельзя пройти так, чтобы на каждом ребре побывать лишь однажды. Вот поэтому и не удавалось обойти Кенигсбергские мосты. Работа Эйлера, в которой была решена задача о Кенигсбергских мостах, была напечатана в том же, 1736 году в «Записках» Петербургской академии наук. Его работа ознаменовала зарождение нового раздела математики – теории графов. Это была самая первая, но далеко не последняя область современной математики, местом рождения которой стала наша страна.

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru