PPt4Web Хостинг презентаций

Главная / Информатика / Интеллектуальные информационные системы 4
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Интеллектуальные информационные системы 4


Скачать эту презентацию

Презентация на тему: Интеллектуальные информационные системы 4


Скачать эту презентацию

№ слайда 1
Описание слайда:

№ слайда 2
Описание слайда:

№ слайда 3 В основе самообучающихся систем лежат методы автоматической классификации пример
Описание слайда:

В основе самообучающихся систем лежат методы автоматической классификации примеров ситуаций реальной практики (обучения на примерах). В основе самообучающихся систем лежат методы автоматической классификации примеров ситуаций реальной практики (обучения на примерах). Примеры реальных ситуаций накапливаются за некоторый исторический период и составляют обучающую выборку

№ слайда 4 «с учителем» - для каждого примера задается в явном виде значение признака его п
Описание слайда:

«с учителем» - для каждого примера задается в явном виде значение признака его принадлежности некоторому классу ситуаций (классообразующего признака); «с учителем» - для каждого примера задается в явном виде значение признака его принадлежности некоторому классу ситуаций (классообразующего признака); «без учителя» - по степени близости значений признаков классификации система сама выделяет классы ситуаций.

№ слайда 5 В результате обучения системы автоматически строятся обобщенные правила или функ
Описание слайда:

В результате обучения системы автоматически строятся обобщенные правила или функции, определяющие принадлежность ситуаций классам, которыми обученная система пользуется при интерпретации новых возникающих ситуаций – формируется база знаний (БЗ), используемая при решении задач классификации и прогнозирования. Эта БЗ периодически автоматически корректируется по мере накопления опыта реальных ситуаций, что позволяет сократить затраты на ее создание и обновление. В результате обучения системы автоматически строятся обобщенные правила или функции, определяющие принадлежность ситуаций классам, которыми обученная система пользуется при интерпретации новых возникающих ситуаций – формируется база знаний (БЗ), используемая при решении задач классификации и прогнозирования. Эта БЗ периодически автоматически корректируется по мере накопления опыта реальных ситуаций, что позволяет сократить затраты на ее создание и обновление.

№ слайда 6 Возможна неполнота и/или зашумленность (избыточность) обучающей выборки => от
Описание слайда:

Возможна неполнота и/или зашумленность (избыточность) обучающей выборки => относительная адекватность БЗ возникающим проблемам; Возможна неполнота и/или зашумленность (избыточность) обучающей выборки => относительная адекватность БЗ возникающим проблемам; Возникновение проблем, связанных с плохой смысловой ясностью зависимостей признаков => неспособность объяснения пользователем получаемых результатов; Ограничения в размерности признакового пространства вызывают неглубокое описание проблемной области и узкую направленность применения

№ слайда 7 Обобщение примеров по принципу от частного к общему сводится к выявлению подмнож
Описание слайда:

Обобщение примеров по принципу от частного к общему сводится к выявлению подмножеств примеров, относящихся к одним и тем же подклассам, и определению для них значимых признаков Обобщение примеров по принципу от частного к общему сводится к выявлению подмножеств примеров, относящихся к одним и тем же подклассам, и определению для них значимых признаков

№ слайда 8 Выбирается признак классификации из множества заданных (либо последовательно, ли
Описание слайда:

Выбирается признак классификации из множества заданных (либо последовательно, либо по какому-либо правилу, например, в соответствии с максимальным числом получаемых подмножеств примеров); Выбирается признак классификации из множества заданных (либо последовательно, либо по какому-либо правилу, например, в соответствии с максимальным числом получаемых подмножеств примеров);

№ слайда 9 2. По значению выбранного признака множество примеров разбивается на подмножеств
Описание слайда:

2. По значению выбранного признака множество примеров разбивается на подмножества; 2. По значению выбранного признака множество примеров разбивается на подмножества; 3. Выполняется проверка, принадлежит ли каждое образовавшееся подмножество примеров одному подклассу; 4. Если какое-то подмножество примеров принадлежит одному подклассу, т.е. у всех примеров подмножества совпадает значение классообразующего признака, то процесс классификации заканчивается (при этом остальные признаки классификации не рассматриваются);

№ слайда 10 5. Для подмножеств примеров с несовпадающим значением классообразующего признака
Описание слайда:

5. Для подмножеств примеров с несовпадающим значением классообразующего признака процесс классификации продолжается, начиная с п.1. (Каждое подмножество примеров становится классифицируемым множеством). 5. Для подмножеств примеров с несовпадающим значением классообразующего признака процесс классификации продолжается, начиная с п.1. (Каждое подмножество примеров становится классифицируемым множеством).

№ слайда 11 Процесс классификации может быть представлен в виде дерева решений, в котором в
Описание слайда:

Процесс классификации может быть представлен в виде дерева решений, в котором в промежуточных узлах находятся значения признаков последовательной классификации, а в конечных узлах – значения признака принадлежности определенному классу. Процесс классификации может быть представлен в виде дерева решений, в котором в промежуточных узлах находятся значения признаков последовательной классификации, а в конечных узлах – значения признака принадлежности определенному классу.

№ слайда 12
Описание слайда:

№ слайда 13 Каждая ветвь дерева соответствует одному правилу решения: Каждая ветвь дерева со
Описание слайда:

Каждая ветвь дерева соответствует одному правилу решения: Каждая ветвь дерева соответствует одному правилу решения: Если Спрос = «низкий» и Издержки =«маленькие» То Цена = «низкая» Примеры инструментальных средств, поддерживающих индуктивный вывод знаний: 1st Class (Programs in Motion), Rulemaster (Radian Corp.), ИЛИС (ArgusSoft), KAD (ИПС Переяславль-Залесский)

№ слайда 14 В результате обучения на примерах строятся математические решающие функции (пере
Описание слайда:

В результате обучения на примерах строятся математические решающие функции (передаточные функции или функции активации), которые определяют зависимости между входными (Xi) и выходными (Yj) признаками (сигналами). В результате обучения на примерах строятся математические решающие функции (передаточные функции или функции активации), которые определяют зависимости между входными (Xi) и выходными (Yj) признаками (сигналами).

№ слайда 15 Каждая такая функция, называемая по аналогии с элементарной единицей человеческо
Описание слайда:

Каждая такая функция, называемая по аналогии с элементарной единицей человеческого мозга – нейроном, отображает зависимость значения выходного признака (Y) от взвешенной суммы (U) значений входных признаков (Xi), в которой вес входного признака (Wi) показывает степень влияния входного признака на выходной: Каждая такая функция, называемая по аналогии с элементарной единицей человеческого мозга – нейроном, отображает зависимость значения выходного признака (Y) от взвешенной суммы (U) значений входных признаков (Xi), в которой вес входного признака (Wi) показывает степень влияния входного признака на выходной:

№ слайда 16 Решающие функции используются в задачах классификации на основе сопоставления их
Описание слайда:

Решающие функции используются в задачах классификации на основе сопоставления их значений при различных комбинациях значений входных признаков с некоторым пороговым значением. В случае превышения порога считается, что нейрон сработал и распознал некоторый класс ситуаций. Решающие функции используются в задачах классификации на основе сопоставления их значений при различных комбинациях значений входных признаков с некоторым пороговым значением. В случае превышения порога считается, что нейрон сработал и распознал некоторый класс ситуаций. Нейроны используются и в задачах прогнозирования, когда по значениям входных признаков после их подстановки в выражение решающей функции получается прогнозное значение выходного признака.

№ слайда 17 Функциональная зависимость может быть линейной. Чаще используется сигмоидальная
Описание слайда:

Функциональная зависимость может быть линейной. Чаще используется сигмоидальная форма, которая позволяет вычленять более сложные пространства значений выходных признаков. Такая функция называется логистической. Функциональная зависимость может быть линейной. Чаще используется сигмоидальная форма, которая позволяет вычленять более сложные пространства значений выходных признаков. Такая функция называется логистической.

№ слайда 18
Описание слайда:

№ слайда 19
Описание слайда:

№ слайда 20 Наиболее распространенный алгоритм обучений нейронной сети. Наиболее распростран
Описание слайда:

Наиболее распространенный алгоритм обучений нейронной сети. Наиболее распространенный алгоритм обучений нейронной сети. Целевая функция по этому алгоритму должна обеспечить минимизацию квадрата ошибки в обучении по всем примерам:

№ слайда 21 Задать произвольно небольшие начальные значения весов связей нейронов. Задать пр
Описание слайда:

Задать произвольно небольшие начальные значения весов связей нейронов. Задать произвольно небольшие начальные значения весов связей нейронов. Для всех обучающих пар «значения входных признаков – значение выходного признака» (примеров из обучающей выборки) вычислить выход сети (Y). Выполнить рекурсивный алгоритм, начиная с выходных узлов по направлению к первому скрытому слою, пока не будет достигнут минимальный уровень ошибки.

№ слайда 22 Вычислить веса на (t+1) шаге по формуле: Вычислить веса на (t+1) шаге по формуле
Описание слайда:

Вычислить веса на (t+1) шаге по формуле: Вычислить веса на (t+1) шаге по формуле:

№ слайда 23 Решение не только классифицирующих, но и прогнозных задач. Решение не только кла
Описание слайда:

Решение не только классифицирующих, но и прогнозных задач. Решение не только классифицирующих, но и прогнозных задач. Построение более точных классификаций при нелинейном характере функциональной зависимости выходных и входных признаков. Имитация параллельного процесса прохода по нейронной сети в отличие от последовательного

№ слайда 24 Система прогнозирования динамики биржевых курсов для Chemical Bank (фирма Logica
Описание слайда:

Система прогнозирования динамики биржевых курсов для Chemical Bank (фирма Logica); Система прогнозирования динамики биржевых курсов для Chemical Bank (фирма Logica); Система прогнозирования для Лондонской фондовой биржи (фирма SearchSpace); Управление инвестициями для Mellon Bank (фирма NeuralWare)

№ слайда 25 NeurOn-Line (фирма GENSYM) NeurOn-Line (фирма GENSYM) Neural Works Professional
Описание слайда:

NeurOn-Line (фирма GENSYM) NeurOn-Line (фирма GENSYM) Neural Works Professional II/Plus (фирма Neural Ware) FOREX-94 (Уралвнешторгбанк)

№ слайда 26 В данных системах база знаний содержит сами ситуации или прецеденты. В данных си
Описание слайда:

В данных системах база знаний содержит сами ситуации или прецеденты. В данных системах база знаний содержит сами ситуации или прецеденты. Поиск решения проблемы сводится к поиску по аналогии (абдуктивному выводу от частного к частному)

№ слайда 27 Получение подробной информации о текущей проблеме; Получение подробной информаци
Описание слайда:

Получение подробной информации о текущей проблеме; Получение подробной информации о текущей проблеме; Сопоставление полученной информации со значениями признаков прецедентов из базы знаний; Выбор прецедента из БЗ, наиболее близкого к рассматриваемой проблеме;

№ слайда 28 В случае необходимости выполняется адаптация выбранного прецедента к текущей про
Описание слайда:

В случае необходимости выполняется адаптация выбранного прецедента к текущей проблеме; В случае необходимости выполняется адаптация выбранного прецедента к текущей проблеме; Проверка корректности каждого полученного решения; Занесение детальной информации о полученном решении в базу знаний.

№ слайда 29 Так же, как и для индуктивных систем, прецеденты описываются множеством признако
Описание слайда:

Так же, как и для индуктивных систем, прецеденты описываются множеством признаков, по которым строятся индексы быстрого поиска. В отличие от индуктивных систем допускается нечеткий поиск с получением множества допустимых альтернатив, каждая из которых оценивается некоторым коэффициентом уверенности. Так же, как и для индуктивных систем, прецеденты описываются множеством признаков, по которым строятся индексы быстрого поиска. В отличие от индуктивных систем допускается нечеткий поиск с получением множества допустимых альтернатив, каждая из которых оценивается некоторым коэффициентом уверенности. Наиболее подходящие решения адаптируются по специальным алгоритмам к реальным ситуациям. Обучение системы сводится к запоминанию каждой новой обработанной ситуации с принятыми решениями в базе прецедентов

№ слайда 30 Системы, основанные на прецедентах, применяются как системы распространения знан
Описание слайда:

Системы, основанные на прецедентах, применяются как системы распространения знаний с расширенными возможностями или как в системах контекстной помощи. Системы, основанные на прецедентах, применяются как системы распространения знаний с расширенными возможностями или как в системах контекстной помощи. Описание ситуации (проблемы) Не печатает принтер Вопросы

№ слайда 31
Описание слайда:

№ слайда 32
Описание слайда:

№ слайда 33
Описание слайда:

№ слайда 34
Описание слайда:

№ слайда 35
Описание слайда:

№ слайда 36 Пример инструментального средства поддержки баз знаний прецедентов – система CBR
Описание слайда:

Пример инструментального средства поддержки баз знаний прецедентов – система CBR-Express (Inference, дистрибьютор фирма Метатехнология). Пример инструментального средства поддержки баз знаний прецедентов – система CBR-Express (Inference, дистрибьютор фирма Метатехнология).

№ слайда 37 Хранилище извлеченной значимой информации из оперативной базы данных, которое пр
Описание слайда:

Хранилище извлеченной значимой информации из оперативной базы данных, которое предназначено для оперативного анализа данных (реализация OLAP-технологии). Хранилище извлеченной значимой информации из оперативной базы данных, которое предназначено для оперативного анализа данных (реализация OLAP-технологии). Извлечение знаний из БД осуществляется регулярно.

№ слайда 38 Определение профиля потребителей конкретного товара; Определение профиля потреби
Описание слайда:

Определение профиля потребителей конкретного товара; Определение профиля потребителей конкретного товара; Предсказание изменений ситуации на рынке; Анализ зависимостей признаков ситуаций (корреляционный анализ)

№ слайда 39 Для извлечения значимой информации из БД используются специальные методы (Data M
Описание слайда:

Для извлечения значимой информации из БД используются специальные методы (Data Mining или Knowledge Discovery), основанные на применении многомерных статистических таблиц или индуктивных методов построения деревьев решений или нейронных сетей. Для извлечения значимой информации из БД используются специальные методы (Data Mining или Knowledge Discovery), основанные на применении многомерных статистических таблиц или индуктивных методов построения деревьев решений или нейронных сетей. Формулирование запроса осуществляется в результате применения интеллектуального интерфейса, позволяющего в диалоге гибко определить значимые признаки анализа

№ слайда 40 Применение информационных хранилищ на практике демонстрирует необходимость интег
Описание слайда:

Применение информационных хранилищ на практике демонстрирует необходимость интеграции интеллектуальных и традиционных информационных технологий, комбинированное использование различных методов представления и вывода знаний, усложнение архитектуры информационных систем. Применение информационных хранилищ на практике демонстрирует необходимость интеграции интеллектуальных и традиционных информационных технологий, комбинированное использование различных методов представления и вывода знаний, усложнение архитектуры информационных систем.

№ слайда 41 IBM (Intelligent Miner) IBM (Intelligent Miner) Silicon Graphics (MineSet) Inter
Описание слайда:

IBM (Intelligent Miner) IBM (Intelligent Miner) Silicon Graphics (MineSet) Intersolv (DataDirect, SmartData) Oracle (Express) SAS Institute (SAS/Assist)

№ слайда 42 Требования к адаптивности ИС: Требования к адаптивности ИС: ИС в каждый момент в
Описание слайда:

Требования к адаптивности ИС: Требования к адаптивности ИС: ИС в каждый момент времени должна адекватно поддерживать организацию бизнес-процессов. Реконструкция ИС должна проводиться всякий раз, как возникает потребность в реорганизации бизнес-процессов. Реконструкция ИС должна проводиться быстро и с минимальными затратами.

№ слайда 43 Адаптивность ИС немыслима без интеллектуализации ее архитектуры. Адаптивность ИС
Описание слайда:

Адаптивность ИС немыслима без интеллектуализации ее архитектуры. Адаптивность ИС немыслима без интеллектуализации ее архитектуры. Ядром адаптивной ИС является постоянно развиваемая модель проблемной области (предприятия), поддерживаемая в специальной базе знаний – репозитории, на основе которого осуществляется генерация или конфигурация программного обеспечения.

№ слайда 44 Построение модели проблемной области Построение модели проблемной области Своевр
Описание слайда:

Построение модели проблемной области Построение модели проблемной области Своевременная корректировка модели

№ слайда 45 Оригинальное проектирование Оригинальное проектирование или Типовое проектирован
Описание слайда:

Оригинальное проектирование Оригинальное проектирование или Типовое проектирование

№ слайда 46 Разработка ИС «с чистого листа» в соответствии с требованиями экономического объ
Описание слайда:

Разработка ИС «с чистого листа» в соответствии с требованиями экономического объекта Разработка ИС «с чистого листа» в соответствии с требованиями экономического объекта Реализуется на основе применения систем автоматизированного проектирования (САПР) ИС или CASE-технологий – Designer 2000 (Oracle), SilverRun (SilverRun Technology). Natural LightStorm (SoftWare AG) При возникновении изменения выполняется генерация (пересоздание) ПО

№ слайда 47 Адаптация типовых разработок к особенностям экономического объекта Адаптация тип
Описание слайда:

Адаптация типовых разработок к особенностям экономического объекта Адаптация типовых разработок к особенностям экономического объекта Реализуется на основе применения систем компонентного (сборочного) проектирования ИС – R/3 (SAP), BAAN IV (Baan Corp), Prodis (Software AG), Галактика (Новый Атлант) При возникновении изменения выполняется конфигурация программ. В редких случаях их переработка с помощью CASE-средств

№ слайда 48 Накапливание опыта проектирования ИС для различных отраслей и типов производства
Описание слайда:

Накапливание опыта проектирования ИС для различных отраслей и типов производства в виде типовых или референтных/ссылочных моделей, которые поставляются вместе с программным продуктом в форме наполненного репозитория. Накапливание опыта проектирования ИС для различных отраслей и типов производства в виде типовых или референтных/ссылочных моделей, которые поставляются вместе с программным продуктом в форме наполненного репозитория. Т.е. вместе с программным продуктом пользователи приобретают БЗ «know-how» об эффективных методах организации и управления бизнес-процессами, которые можно адаптировать в соответствии со спецификой конкретного экономического объекта

№ слайда 49
Описание слайда:

№ слайда 50 содержит описание объектов, функций (операций), процессов (совокупности операций
Описание слайда:

содержит описание объектов, функций (операций), процессов (совокупности операций), которые реализуются в программных модулях компонентной системы. содержит описание объектов, функций (операций), процессов (совокупности операций), которые реализуются в программных модулях компонентной системы. Большое значение в базовой модели имеет задание правил (бизнес-правил) поддержания целостности ИС, которые устанавливают условия проверки корректности совместного применения операций бизнес-процессов и поддерживающих их программных модулей.

№ слайда 51 соответствуют типовым конфигурациям ИС, выполненным для определенных отраслей (а
Описание слайда:

соответствуют типовым конфигурациям ИС, выполненным для определенных отраслей (автомобильная, электронная, нефтегазовая) или типов производства (индивидуальное, серийное, массовое, непрерывное) соответствуют типовым конфигурациям ИС, выполненным для определенных отраслей (автомобильная, электронная, нефтегазовая) или типов производства (индивидуальное, серийное, массовое, непрерывное)

№ слайда 52 Строится либо путем привязки или копирования фрагментов основной или типовой мод
Описание слайда:

Строится либо путем привязки или копирования фрагментов основной или типовой моделей в соответствии со специфическими особенностями предприятия либо в результате просмотра этих моделей и экспертного опроса. Строится либо путем привязки или копирования фрагментов основной или типовой моделей в соответствии со специфическими особенностями предприятия либо в результате просмотра этих моделей и экспертного опроса. Сформированная модель предприятия в виде метаописания хранится в репозитории, при необходимости корректируется. По сформированной модели автоматически осуществляется конфигурация ИС, в ходе которой выполняется семантический контроль по соответствующим бизнес-правилам

№ слайда 53 Отсутствие средств оценки модели предприятия. Отсутствие средств оценки модели п
Описание слайда:

Отсутствие средств оценки модели предприятия. Отсутствие средств оценки модели предприятия. Для того, чтобы можно было выбирать оптимальные варианты конфигурации ИС, используют средства экспорта модели во внешние системы моделирования.

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru