PPt4Web Хостинг презентаций

Главная / Геометрия / Многогранники вокруг нас или мы внутри многогранника
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Многогранники вокруг нас или мы внутри многогранника


Скачать эту презентацию

Презентация на тему: Многогранники вокруг нас или мы внутри многогранника


Скачать эту презентацию



№ слайда 1 «Многогранники вокруг нас или мы внутри многогранника» Автор :Димитриева А. И.,
Описание слайда:

«Многогранники вокруг нас или мы внутри многогранника» Автор :Димитриева А. И., учитель математики МОУ «Шумшевашская СОШ»Аликовского района

№ слайда 2 «Математика владеет не только истиной, но и высшей красотой - красотой отточенно
Описание слайда:

«Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам  искусства.»          Бертран Рассел 

№ слайда 3 МНОГОГРАННИК часть пространства, ограниченная совокупностью конечного числа плос
Описание слайда:

МНОГОГРАННИК часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем вокруг каждой вершины существует ровно один цикл многоугольников.

№ слайда 4 Правильные многогранники имеют красивые формы. Они являются удивительным символо
Описание слайда:

Правильные многогранники имеют красивые формы. Они являются удивительным символом симметрии, привлекавшим внимание выдающихся мыслителей.Этим и объясняется интерес человека к многогранникам.

№ слайда 5 Многогранники в природе В книге немецкого биолога Э. Геккеля "Красота форм в при
Описание слайда:

Многогранники в природе В книге немецкого биолога Э. Геккеля "Красота форм в природе" можно прочитать такие строки: "Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы".

№ слайда 6 По законам «строгой» архитектуры… Пчёлы - удивительные создания. Пчелиные соты п
Описание слайда:

По законам «строгой» архитектуры… Пчёлы - удивительные создания. Пчелиные соты представляют собой пространственный паркет и заполняют пространство так, что не остается просветов. Как не согласиться с мнением пчелы из сказки «Тысяча и одна ночь»: «Мой дом построен по законам самой строгой архитектуры. Сам Эвклид мог бы поучиться, познавая геометрию сот».

№ слайда 7 Простейшее животное Скелет одноклеточного организма феодарии (Circogonia icosahe
Описание слайда:

Простейшее животное Скелет одноклеточного организма феодарии (Circogonia icosahedra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Он больше похоже на звёздчатый многогранник. Из всех многогранников с тем же числом граней икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление толщи воды.

№ слайда 8 Интересно Икосаэдр оказался в центре внимания биологов в их спорах относительно
Описание слайда:

Интересно Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр.

№ слайда 9 Чудо природы – кристаллы Правильные многогранники - самые выгодные фигуры. И при
Описание слайда:

Чудо природы – кристаллы Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников:куб передает форму кристаллов поваренной соли NaClмонокристалл алюминиево-калиевых квасцов имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра,сернокислый натрий - тетраэдр, бор - икосаэдр.

№ слайда 10 Геологические находки Шеелит,5см, найден в Китае. (блочное строение кристалла),
Описание слайда:

Геологические находки Шеелит,5см, найден в Китае. (блочное строение кристалла),

№ слайда 11 Геологические находки Друза кристаллов кварца (горный хрусталь), 9см, найден на
Описание слайда:

Геологические находки Друза кристаллов кварца (горный хрусталь), 9см, найден на Урале.

№ слайда 12 Геологические находки Гранаты: Андрадит и Гроссуляр ( найдены в бассейне реки Ах
Описание слайда:

Геологические находки Гранаты: Андрадит и Гроссуляр ( найдены в бассейне реки Ахтаранда, Якутия) 

№ слайда 13 Историческая справка История правильных многогранников уходит в глубокую древнос
Описание слайда:

Историческая справка История правильных многогранников уходит в глубокую древность. Начиная с 7 века до нашей эры в Древней Греции создаются философские школы, в которых происходит постепенный переход от практической к философской геометрии. Большое значение в этих школах приобретают рассуждения, с помощью которых удалось получать новые геометрические свойства. Одной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора. Отличительным знакомпифагорейцев была пентаграмма, на языке математики- это правильный невыпуклый или звездчатый пятиугольник. Пентаграмме присваивалось способность защищать человека от злых духов.

№ слайда 14 Пифагорейцы, а затем Платон полагали, что материя состоит из четырех основных эл
Описание слайда:

Пифагорейцы, а затем Платон полагали, что материя состоит из четырех основных элементов: огня, земли, воздуха и воды.Существование пяти правильных многогранников они относили к строению материи и Вселенной.Согласно этому мнению, атомы основных элементов должны иметь форму различных Платоновых тел:

№ слайда 15
Описание слайда:

№ слайда 16 Дальнейшее развитие математики связано с именами Платона, Евклида, Архимеда, Кеп
Описание слайда:

Дальнейшее развитие математики связано с именами Платона, Евклида, Архимеда, КеплераВсе использовали в своих философских теориях правильные многогранники.

№ слайда 17 Конструирование архимедова усеченного икосаэдра из платонова икосаэдра
Описание слайда:

Конструирование архимедова усеченного икосаэдра из платонова икосаэдра

№ слайда 18 Двойственные многогранники Куб и октаэдр находятся в положении двойственности др
Описание слайда:

Двойственные многогранники Куб и октаэдр находятся в положении двойственности друг другу, грани являются q-угольниками, р из которых примыкают к каждой вершине.

№ слайда 19 Космологическая гипотеза Кеплера Кеплер попытался связать со свойствами правильн
Описание слайда:

Космологическая гипотеза Кеплера Кеплер попытался связать со свойствами правильных многогранников некоторые свойства Солнечной системы. Он предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каждой парой "небесных сфер", по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр. Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна.

№ слайда 20 Многогранники в искусстве «Поистине, живопись — наука и законная дочь природы,иб
Описание слайда:

Многогранники в искусстве «Поистине, живопись — наука и законная дочь природы,ибо она порождена природой» (Леонардо да Винчи)

№ слайда 21 Титан Возрождения, живописец, скульптор, ученый и изобретатель Леонардо да Винчи
Описание слайда:

Титан Возрождения, живописец, скульптор, ученый и изобретатель Леонардо да Винчи (1452-1519) — символ неразрывности искусства и науки, а следовательно, закономерен его интерес к таким прекрасным, высокосимметричным объектам, как выпуклые многогранники вообще и усеченный икосаэдр в частности. Изображения Леонардо да Винчидодекаэдра методом жестких ребер (а)и методом сплошных граней(б)

№ слайда 22 Знаменитый художник, увлекавшийся геометрией, Альбрехт Дюрер (1471- 1528), в изв
Описание слайда:

Знаменитый художник, увлекавшийся геометрией, Альбрехт Дюрер (1471- 1528), в известной гравюре «Меланхолия» на переднем плане изобразил додекаэдр. 

№ слайда 23 Голландский художник Мориц Корнилис Эшер (1898-1972)создал уникальные и очароват
Описание слайда:

Голландский художник Мориц Корнилис Эшер (1898-1972)создал уникальные и очаровательные работы, в которых использованы или показаны широкий круг математических идей. Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. На гравюре "Четыре тела" Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.

№ слайда 24 Изящный пример звездчатого додекаэдра можно найти в его работе "Порядок и хаос".
Описание слайда:

Изящный пример звездчатого додекаэдра можно найти в его работе "Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором. Наиболее интересная работа Эшера - гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры.

№ слайда 25 На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками
Описание слайда:

На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра.Форму додекаэдра, по мнению древних, имела  ВСЕЛЕННАЯ , т.е. они считали, что мы живём внутри свода, имеющего форму поверхности  правильного додекаэдра.

№ слайда 26 Применения икосаэдров Титульный листкниги Ж. Кузена«Книга о перспективе».Надгроб
Описание слайда:

Применения икосаэдров Титульный листкниги Ж. Кузена«Книга о перспективе».Надгробный памятникв кафедральном соборе Солсбери.

№ слайда 27 Многогранники в архитектуре Наука геометрия возникла из практических задач, ее п
Описание слайда:

Многогранники в архитектуре Наука геометрия возникла из практических задач, ее предложения выражают реальные факты и находят многочисленные применения. Геометрия появляется всюду, где нужна хотя бы малейшая точность в определении формы и размеров.

№ слайда 28 Александрийский маяк В III веке до н.э. был построен маяк, чтобы корабли могли б
Описание слайда:

Александрийский маяк В III веке до н.э. был построен маяк, чтобы корабли могли благополучно миновать рифы на пути в александрийскую бухту. Ночью им помогало в этом отражение языков пламени, а днем - столб дыма. Это был первый в мире маяк, и простоял он 1500 лет Фаросский маяк состоял из трех мраморных башен, стоявших на основании из массивных каменных блоков. Первая башня была прямоугольной, в ней находились комнаты, в которых жили рабочие и солдаты. Над этой башней располагалась меньшая, восьмиугольная башня со спиральным пандусом, ведущим в верхнюю башню. Верхняя башня формой напоминала цилиндр, в котором горел огонь, помогавший кораблям благополучно достигнуть бухты. На вершине башни стояла статуя Зевса Спасителя. Общая высота маяка составляла 117 метров.

№ слайда 29 Царская гробница Великая пирамида была построена как гробница Хуфу, известного г
Описание слайда:

Царская гробница Великая пирамида была построена как гробница Хуфу, известного грекам как Хеопс. Он был одним из фараонов, или царей древнего Египта, а его гробница была завершена в 2580 году до н.э. Позднее в Гизе было построено еще две пирамиды, для сына и внука Хуфу, а также меньшие по размерам пирамиды для их цариц. Пирамида Хуфу, самая дальняя на рисунке, является самой большой. Пирамида его сына находится в середине и смотрится выше, потому что стоит на более высоком месте.

№ слайда 30 Многогранники в архитектуре Москвы Собор непорочного зачатия Девы Марии на малой
Описание слайда:

Многогранники в архитектуре Москвы Собор непорочного зачатия Девы Марии на малой Грузинской Исторический музей

№ слайда 31 Многогранники в архитектуре Москвы Казанская церковь в Москве
Описание слайда:

Многогранники в архитектуре Москвы Казанская церковь в Москве

№ слайда 32 Многогранники в архитектуре Москвы Высотки. КотельникиЦУМ
Описание слайда:

Многогранники в архитектуре Москвы Высотки. КотельникиЦУМ

№ слайда 33 Многогранники в архитектуре Москвы Телеграф
Описание слайда:

Многогранники в архитектуре Москвы Телеграф

№ слайда 34 Многогранники в архитектуре Москвы Новоарбатский замокМалый Ржевский пер.
Описание слайда:

Многогранники в архитектуре Москвы Новоарбатский замокМалый Ржевский пер.

№ слайда 35 Многогранники в архитектуре Москвы ул Пятницкая
Описание слайда:

Многогранники в архитектуре Москвы ул Пятницкая

№ слайда 36 Литература: - Энциклопедия для детей. Т. 11. Математика. – М: Аванта плюс, 2002.
Описание слайда:

Литература: - Энциклопедия для детей. Т. 11. Математика. – М: Аванта плюс, 2002. - Энциклопедия для детей. Я познаю мир.Математика. – М: Издательство АСТ, 1999. - Ворошилов А.В. Математика и искусство. - М. просвещение, 1992. – 352 - Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994. - 495 с

№ слайда 37 Интернет ресурсы: http://www.nips.riss-telecom.ru/poly/ Мир многогранниковhttp:/
Описание слайда:

Интернет ресурсы: http://www.nips.riss-telecom.ru/poly/ Мир многогранниковhttp://www.sch57.msk.ru:8101/collect/smogl.htmИстория математикиhttp://mschool.kubsu.ru/ Библиотека электронных учебных пособийhttp://www.ega-math.narod.ru/ Статьи по математикеhttp://dondublon.chat.ru/math.htm Популярная математикаhttp://www.uic.ssu.samara.ru/~nauka/index.htm «В мире науки»http://www.mccme.ru/ Московский центр непрерывного математического образованияhttp://mathc.chat.ru/ Математический калейдоскоп

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru