Зачем физика нужна инженеру Презентацию подготовили ученицы ХI класса «А»МОУ Аннинский лицейСемынина ИннаГончаренко Екатерина
План Почему физика нужна инженеру?Пример из истории, иллюстрирующий значение широкого физического горизонта при решении технических вопросов.Итоги: «…знание физики для инженера – не роскошь, а необходимость…» (Л. И. Мандельштам).
Взаимосвязь физики и техники Физика составляет научный фундамент современной техники и её развития, включая такие направления, как ядерная энергетика, космическая техника, квантовая электроника, вычислительная техника, разработка наукоёмких, ресурсосберегающих технологий. В свою очередь, реализация новых физических идей многократно увеличивает базу и возможности физического эксперимента и его моделирования (исследование экстремальных состояний вещества, строения и эволюции Земли, Солнечной системы и дальнего Космоса, термоядерного синтеза, компьютерное моделирование и др.). Знания об окружающих нас предметах и явлениях, накопленные учёными за много веков кропотливых наблюдений, размышлений и проведённых опытов, реализуются сегодня в виде самых разнообразных устройств, облегчающих и улучшающих нашу жизнь, лежат в основе научно-технического прогресса человечества.
Разнообразные технические объекты.
Многообразие современных измерительных приборов
Современная техника характеризуется высокими темпами её модернизации и автоматизации, унификацией, стандартизацией, интенсивным развитием энергетики, радиоэлектроники, химической технологии, широким использованием автоматики, ЭВМ и др. Специалисты с высшим техническим образованием - инженеры (от франц. ingénieur, от лат. ingenium — способность, изобретательность) – остаются в современном обществе самыми востребованными.
Почему физика нужна инженеру? С физическими явлениями и законами инженер непосредственно встречается в своей практической деятельности: инженер-строитель, рассчитывая прочность сооружения, должен знать законы упругости, инженер-электротехник в проектировании осветительной сети должен знать законы переменного тока и т. д.Знание физики самой по себе как цельной дисциплины с её специфической методикой позволяет не только находить решение сложных технических задач, но и открывать новые пути для дальнейшего технического прогресса.
Физические методы исследования Основными методами исследования в физике являются экспериментальный – как метод построения эмпирического (основанного на опыте) знания и теоретический – как метод построения теоретического знания. Эмпирическое знание можно построить, используя такие методы исследования, как наблюдение, измерение, опыт, моделирование. Опытные факты нуждаются в описании, обобщении, последующей интерпретации, т. е. в теоретическом осмыслении. Любая теоретическая гипотеза, в свою очередь, может быть подтверждена или опровергнута лишь эмпирическим путём.Существует такой метод решения научных задач, как мысленный эксперимент, который предшествует реальному опыту, а в некоторых случаях заменяет его. В мысленном эксперименте физические тела можно поставить в такие условия, которые навозможно воспроизвести в реальности. Например, мысленный эксперимент с лифтом привёл Эйнштейна к принципу эквивалентности, лежащему в основе общей теории относительности.
Пример, иллюстрирующий значение широкого физического горизонта при решении технических вопросов. Изобретение микроскопа открыло в биологии в середине XIX в. совершенно новые пути изучения явлений жизни. Исследователи ждали, что с постройкой микроскопов, увеличивающих в десятки, сотни тысяч и миллионов раз позволят проникнуть в самые сокровенные детали строения живой материи.
При такой конъюнктуре специалисты-конструкторы оптических приборов с усиленной энергией взялись за усовершенствование микроскопа. Считалось, что можно достигнуть любых сколь угодно больших увеличений, а основная трудность сводится к преодолению технических трудностей. В основе теории расчёта оптических приборов в то время лежали законы геометрической оптики, базирующиеся на основе понятия светового луча как прямой линии.
Световой луч в геометрической оптике
Однако работа по совершенствованию микроскопа не дала ожидаемых результатов: увеличение не удавалось сделать столь значительным, как предполагалось. Возникло противоречие между тем, что казалось достижимым на основе применения законов геометрической оптики, и тем, что достигалось на практике. Объяснения этому не находилось.
К. Ф. Цейс, немецкий оптик-механик, основавший в 1846 году фирму в Йене (ныне «Карл Цейс Йена» в Германии) по производству оптических приборов и оптического стекла, пригласил для консультации молодого физика Аббе. Аббе обладал хорошей теоретической подготовкой, поэтому подошёл к вопросу о микроскопе с позиций более глубокого и совершенного знания – волновой оптики. Один из главных выводов, полученных Аббе, заключался в том, что волновая природа света ставит принципиальный предел увеличению микроскопа: если детали объекта меньше определённой величины, то эти детали не могут быть различимы из-за дифракционных явлений. Блестящими опытами Аббе подтвердил справедливость своих теоретических выводов.
Дифракция ограничивает одну из главных характеристик микроскопа – его разрешающую способность. Разрешающая способность микроскопа характеризует способность давать раздельные изображения двух близких друг к другу точек объекта и определяется минимальным расстоянием между ближайшими точками, при котором эти точки ещё можно наблюдать раздельно.При малых размерах наблюдаемых в микроскоп объектов нельзя пренебрегать тем, что свет – это электромагнитная волна, поэтому полученные изображения следует рассматривать как результат интерференции световых волн, идущих от точек объекта.Из-за дифракции света изображение точки — кружок (светлое пятно, окруженное кольцами).
Дифракционные явления
Увеличение современного оптического микроскопа Независимо друг от друга, Э. Аббе и Г. Гельмгольц вывели формулы, позволяющие оценить предел разрешения оптического микроскопа: принципиально нельзя с помощью оптического микроскопа рассмотреть какие-либо детали, размер которых меньше 0,4 λ. Волновые свойства света накладывают свои ограничения, которые нельзя преодолеть.Увеличение современного оптического микроскопа, достигает 1500 — 2000. Предел разрешения для микроскопа составляет 0,25 мкм, тогда как для человеческого глаза он равен ~0,08 мм.
Современный оптический микроскоп
Современный оптический микроскоп с цифровой видеокамерой Эритроциты в оптическом микроскопе.
Электронный микроскоп В настоящее время в научных исследованиях широко применяется т. н. электронный микроскоп.Электронный микроскоп - вакуумный электронно-оптический прибор для наблюдения и фотографирования многократно (до 10 млн. раз) увеличенного изображения объектов, полученного с помощью пучков электронов, ускоренных до больших энергий. Предел разрешения электронного микроскопа составляет ~0,01-0,1 нм.
Электронный микроскоп (схема) Разрешающая способность зависит от длины волны, на которой работает прибор, поэтому разрешающая способность электронного микроскопа в 1000 раз больше разрешающей способности оптического микроскопа.
Современный электронный микроскоп
«…Знание, широкое, полное знание физики для инженера – не роскошь, а необходимость, … широкий физический горизонт должен быть достоянием не только тех избранных людей – инженеров, которым суждено прокладывать новые пути в технике, но и достоянием всякого инженера, сознательно относящегося к своему делу». Л. И. Мандельштам.
МОУ Аннинский лицей сотрудничает с архитектурно-строительным (ВГАСУ) и аграрным (ВГАУ) университетами.ВГАСУ основан в 1930 г. В 1993г. институт был преобразован в государственную архитектурно-строительную академию, в 2000 г. получил статус университета. Вузом за годы своей работы подготовлено более 40 тыс. инженеров-строителей. Такие факультеты, как строительный, строительно- технологический, инженерных систем и сооружений, механико-автодорожный, автоматизации и информационных систем готовят инженеров разных строительных специальностей. Воронежский государственный аграрный университет имени К. Д. Глинки – первый вуз Центрального Черноземья России. Он был учреждён в июне 1912 года как Воронежский сельскохозяйственный институт императора Петра I. К факультетам, позволяющим получить профессию инженера, относятся: агроинженерный, землеустроительный, зооинженерный.
Нужна ли физика современному человеку? В нашем классе все ответили однозначно: не просто нужна, а важна. Для человека образованного не должно быть загадок в явлениях окружающего мира. Многие, в том числе и мы, собираются поступать в технические ВУЗы, получать инженерные специальности.Как учиться физике? На этот вопрос дал ответ российский физик, один из основателей отечественной научной школы по радиофизике, академик АН СССР (1929) Л. И. Мандельштам:
«Ни учебник, ни учитель недостаточны, чтобы научить физике. Учащийся должен хоть немного работать опытно сам. Он должен хоть поверхностно, но сам слышать, сам осязать те явления, о которых ему говорят». Л. И. Мандельштам
Наш ХI «А» за работой
Использованные информационные ресурсы: Л. Мандельштам. Почему физика нужна инженеру? (ж. «Квант», № 2/1991).Большая энциклопедия Кирилла и Мефодия 2006, 10 CD.Иллюстрированный энциклопедический словарь, 2 CD.Энциклопедия «Мир вокруг нас», CD.Детская энциклопедия Кирилла и Мефодия 2006, 2 CD.Физика, 7 – 11 классы. Библиотека наглядных пособий, CD и др.
Микроскоп Микроскоп (от греческого mikros — малый и skopeo — смотрю) - оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом. Первый двухлинзовый микроскоп построил З. Янсен (Нидерланды) около 1590. С 1609-1610 оптики-ремесленники во многих странах Европы изготавливают подобные микроскопы, а Галилей использует в качестве микроскопа сконструированную им зрительную трубу. Необычайного мастерства в шлифовании линз достиг А. ван Левенгук (1632-1723), который сделал микроскоп из единственной линзы, но необычайно тщательно отшлифованной. Левенгук впервые наблюдал микроорганизмы.Теоретический расчет сложных микроскопов дал немецкий физик Э. Аббе в 1872.